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Abstract
Access to nutrients is a key factor governing development, reproduction and ultimately fit-

ness. Within social groups, contest-competition can fundamentally affect nutrient access,

potentially leading to reproductive asymmetry among individuals. Previously, agent-based

models have been combined with the Geometric Framework of nutrition to provide insight

into how nutrition and social interactions affect one another. Here, we expand this modelling

approach by incorporating evolutionary algorithms to explore how contest-competition over

nutrient acquisition might affect the evolution of animal nutritional strategies. Specifically,

we model tolerance of nutrient excesses and deficits when ingesting nutritionally imbal-

anced foods, which we term ‘nutritional latitude’; a higher degree of nutritional latitude con-

stitutes a higher tolerance of nutritional excess and deficit. Our results indicate that a

transition between two alternative strategies occurs at moderate to high levels of competi-

tion. When competition is low, individuals display a low level of nutritional latitude and regu-

larly switch foods in search of an optimum. When food is scarce and contest-competition is

intense, high nutritional latitude appears optimal, and individuals continue to consume an

imbalanced food for longer periods before attempting to switch to an alternative. However,

the relative balance of nutrients within available foods also strongly influences at what levels

of competition, if any, transitions between these two strategies occur. Our models imply that

competition combined with reproductive skew in social groups can play a role in the evolu-

tion of diet breadth. We discuss how the integration of agent-based, nutritional and evolu-

tionary modelling may be applied in future studies to further understand the evolution of

nutritional strategies across social and ecological contexts.
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Author Summary

Getting enough nutrients and at the right balance is among the primary challenges that an
animal has to overcome. Animals that live in groups have the added complexity of compe-
tition among individuals over foods. We used an evolutionary simulation to explore how
the intensity of such competition interacts with the composition of available foods to influ-
ence the strategies that an animal should use to meet its nutritional requirements. We
found that two general strategies emerged. When competition was weak, animals that only
locate and consume foods with an ideal balance of nutrients were favoured. However,
when competition was strong, a strategy with which animals meet their nutritional re-
quirements by eating large amounts of nutritionally imbalanced, but complementary,
foods was optimal. These results implicate a role for competition for foods between ani-
mals within social groups in shaping dietary breadth. Evolutionary simulations such as
those described here are important for understanding how different species evolve to meet
their nutritional requirements in a range of ecological circumstances.

Introduction
Access to nutrients is one of the most influential factors affecting reproductive development
and ultimately fitness (e.g. [1–4]). A range of factors can influence nutrient access, but for
many organisms interactions with conspecifics are pivotal. Group living animals in particular
face a complex trade-off between access to foods that provide them with a balanced diet, social
interactions that enhance fitness via benefits of group cohesion, and competition [5]. Contest-
competition, for example, where individuals directly engage one another for access to nutrients,
is a source of inter-individual variance that can lead to clear dominance hierarchies [6,7]. In
the extreme, contests may even lead to a reproductive division of labour, with only those indi-
viduals at the top of the hierarchy being able to access enough nutrients, and at the right bal-
ance, to reproduce [8–10].

The effects that competition over food access can have on inter-individual variation in re-
production are well known in arthropods. For example, colonies of social spiders (e.g. Stegody-
phus sp.) tend to be characterised by body size asymmetries and reproductive skews [11–15].
As a result of contest-competition over food access, only larger females are able to attain
enough of the right nutrients to reproduce [8,13]. It has even been proposed that the reproduc-
tive asymmetries that arise from competition over nutrients may constitute a reproductive divi-
sion of labour, in which non-reproductive spiders provide alloparental care ([8,16] c.f. [14,17]).
In the burying beetle, Nicrophorus vespilloides, females compete for access to carcasses, which
in turn leads to a dominance hierarchy where reproduction is skewed in favour of the domi-
nant female [18]. Experimental data indicate that access to appropriate nutrition is the main
factor determining reproductive output and also impacts performance in dominance interac-
tions [18,19]. Although there is no such direct evidence in cooperative breeding vertebrates,
correlative studies in mongooses (Mungos mungo) and meerkats (Suricata suricatta) show that
subordinate females breed more frequently in periods of food abundance [20,21]. These results
highlight the importance of contest competition as a potentially major ecological factor shap-
ing the evolution of nutritional and social traits in animal groups.

In recent years, a new understanding of interactions between an organism’s nutritional re-
quirements and its environment has been gained using the state-space models of the Geometric
Framework (GF) [22–24]. In the GF, nutrients are represented by a Cartesian coordinate sys-
tem, which is referred to as the nutrient space [23]. In the simple case of a nutrient plane, the
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GF represents two food components (e.g., the macronutrients protein and carbohydrate) on x
and y axes (Fig. 1). The optimal amount and blend of nutrients that the animal requires over a
specified period in its life are represented by a coordinate or region within the nutrient space
called the Intake Target (IT; [23]). Foods are represented by ‘food rails’, which are radials
through the nutrient space with a slope that reflects the ratio of macronutrients present within
the food (Fig. 1). As an individual eats, its nutritional state (x, y coordinate) moves through the
nutrient space in parallel with the rail of the food it consumes. A high quality food may be con-
sidered one with a food rail that will guide an individual’s nutritional state to the IT from its
current state (Fig. 1); i.e., one that is nutritionally balanced. When confined to nutritionally im-
balanced foods, the animal needs to resolve the trade-off between over-ingesting some nutri-
ents and under-ingesting others. The strategy that it adopts in this situation, known as the ‘rule
of compromise’, is expected to vary within and between species depending on the relative costs
of ingesting excesses and deficits of the different nutrients [23,25].

Fig 1. An Example of the Geometric Framework (GF). A visualisation of the GF [23] used to track the
nutritional state of a hypothetical individual. The graph area depicts the nutrient space available with two
macronutrients; protein (P) is represented on the x-axis and carbohydrate (C) on the y-axis. The requirements
of the individual with regards the two macronutrients are depicted by the Intake Target (IT; the red crosshair).
In this instance the requirements for P and C are equal (75:75). An individual’s nutritional state is its (x, y)
position in the nutrient space. The only way for an individual to move through the nutrient space to the IT is to
eat foods. Three foods with differing P:C ratios are depicted by three food rails (solid black lines); Food A is
high in C but low in P (P:C, 1:4); Food B is balanced (1:1); Food C is high in P but low in C (4:1). As an
individual eats, its nutritional state moves through the nutrient space (depicted by the sequence of arrows) in
parallel to the food rail for the food it is eating. Here, the individual has reached the IT by first eating Food A for
steps one and two, then Food C for steps three and four, and finally on Food B for the step five. The individual
could also have taken a more direct route to the IT by eating only Food B. This food is nutritionally balanced in
regard to the individual’s IT. Alternatively, the individual may have eaten equal amounts of macronutrient from
Foods C and A. These two foods are individually imbalanced but collectively complementary.

doi:10.1371/journal.pcbi.1004111.g001
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Recently, the GF has been combined with Agent-Based Models (ABMs; simulations repre-
senting each individual explicitly, sometimes named individual-based models in ecological
fields [26]) to successfully demonstrate how social interactions and nutritional strategies affect
one another [5]. With regard to the influence of competition on the emergence of reproductive
asymmetries, Lihoreau et al. [5] link classic models of contest competition (outlined by Bona-
beau et al. [27]) with the GF in an ABM. In that model, access to each food rail is limited, and
individuals must displace competitors via dominance interactions before feeding. Performance
in dominance interactions is a function of the individual’s fitness, which in turn is negatively
correlated with the distance between an individual’s nutritional state and the IT. Reproductive
asymmetry arises as individuals who ‘get lucky’ and are able to feed on high quality foods early
experience a ‘winner effect’ (see [28]). That is, a loop of positive feedback ensues whereby bet-
ter-nourished individuals continue to perform well in dominance interactions and monopolise
high quality foods. Ultimately, only certain individuals attain enough nutrients at the right bal-
ance to breed, a model outcome that is consistent with observations of reproductive skew in
some social animals (e.g. spiders [8,13] and burying beetles [18,19]). Interestingly, this model
also clearly demonstrates how early stochasticity in nutrient access can lead to the emergence
of a self-organised social structure from an initially homogeneous group [5,29].

The aforementioned mechanistic model, however, does not consider the optimal nutritional
strategy that individuals should adopt. When feeding on a poor quality food, an individual may
choose to stop eating and seek an alternative. However, the individual risks incurring costs;
e.g., the time spent attempting, but ultimately failing, to gain access to alternative better foods.
Under some circumstances it is thus conceivable that an individual could get its nutritional
state closer to the IT by consuming a poor quality food, rather than by frequently searching for
better balanced alternatives. Ultimately, the optimal strategy for leaving a suboptimal food may
be dependent on the level of competition and the kinds of food in the environment.

The incorporation of evolutionary and genetic components into GF based ABMs has been
identified as a promising method with which to understand how ecological factors interact
with nutritional strategies [5,23,30]. Here, we present the first such model, which we used to
explore how intra-specific competition might affect the evolution of animals’ nutritional strate-
gies. In the model by Lihoreau et al. [5], an individual’s nutritional strategy was governed by
the fixed global parameter K, which we refer to here as ‘nutritional latitude’. When eating a
food that will not guide its nutritional state to the IT an individual has some probability of leav-
ing, which is both a function of the balance of nutrients in the food being consumed, and K.
Here, a high Kmeans an individual is likely to consume the same imbalanced food until reach-
ing a point of nutritional compromise (at which point it then seeks an alternative). In contrast,
a low K corresponds to a low probability that an individual will continue feeding on a food rail
that will not guide its nutritional state directly to the IT. Individuals with extremely high or low
values of Kmay, thus, be thought of as nutrient generalists or specialists, respectively (sensu
Raubenheimer and Simpson [31]; we note that K as we model it here is equivalent to 1—K in
Lihoreau et al. [5]).

In this study, we couple nutritional latitude with an evolutionary algorithm, whereby an in-
dividual’s K is governed by an individual-level, heritable and mutable value. Each generation
consists of 150 individuals that must attain a certain level of fitness (i.e., nutritional state) with-
in a fixed number of model iterations for it to be considered fit enough to breed. Fitness-pro-
portionate selection then operates among those individuals fit enough to breed, with proximity
to the IT (optimal point of nutrient intake in the nutrient space) determining this fitness. We
allowed K to evolve over 1000 generations under varying levels of competition and in differing
nutritional environments (i.e., different abundance and nutritional compositions of food). In
doing so, we aimed to explore the effects of contest competition and the number and
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composition of foods in the nutritional environment on the evolution of individual
nutritional strategies.

Results

Experiment 1: Contest Competition in 2- and 3-Food Environments
We began by exploring the effect of intensity of competition on the evolution of nutritional lat-
itude in 2- and 3-food environments. We performed 30 model runs under varying intensities
of competition (c, which is bounded at 0 and 1; all parameters are outlined in Table 1, and their
mode of action is described in Models). From each model run we recorded the population
mean nutritional latitude (K, also bounded at 0 and 1) after 1000 generations.

We first looked at the effects of competition in environments containing one nutritionally bal-
anced food, and two imbalanced but complementary foods (i.e., those which between them sub-
tend a region of the nutrient space containing the IT). For the latter two complementary foods
we varied the extent of their nutritional imbalance (Fig. 2). In these environments when c = 0, K
was stable at a range of values (Fig. 2). The high variance in stable values of K suggests that no
one level of nutritional latitude is optimal where competition is weak, but most low levels are
equally fit. In the face of increasing c, K was relatively stable up to a point. With mildly imbal-
anced foods at c = 0.7, and with extremely imbalanced foods at c = 0.67, K increased sharply to
above 0.91 (Fig. 2). In both 3-food environments, increases in K were accompanied by declines in
the variance of evolved K (Fig. 2). For example, in the environment with mildly imbalanced
foods the 2.5th and 97.5th percentiles of K were 0.14 and 0.47, respectively with c = 0, but were
0.69 and 0.88 when c = 0.73 (Fig. 2A). Thus, selection for a high level of nutritional latitude is
strong at moderate to high c, with a further sharp decrease at extremely high levels of c (i.e.,
> 0.85), largely being driven by a change in the lower 2.5th percentile of K (Fig. 2). At very high
c the population could not support itself as no individuals could fulfil the fitness requirements to
be considered in breeding condition by the end of the simulation (Fig. 2).

We next considered competition in a 2-food environment, containing one balanced and
one imbalanced food, the latter of which varied in the degree of nutritional imbalance (Fig. 3).
With a mildly imbalanced food, absent or weak competition selected for a lower K (and lower
variance; Fig. 3A) than in 3-food environments (Fig. 2). Thus, selection for low nutritional lati-
tude was stronger in this 2-food environment than in the 3-food environments. That being
said, in the 2-food environment with a mildly imbalanced food and low c, K was stable, before
transitioning to high K under moderate to high c (Fig. 3A), as was the case in 3-food environ-
ments (Fig. 2). In the 2-food environment that contained a balanced and a severely imbalanced
food, nutritional latitude showed a quite different profile from that previously observed. In-
creasing c in this environment selected for low nutritional latitude (and very low variance in
K), reaching a minimum value of K = 0.06 at c = 0.625 (Fig. 3B).

These results clearly indicate the importance of access to a complementary food to correct
the nutritional state associated with consuming large amounts of a severely nutritionally imbal-
anced food (see S1 File for additional discussion). As part of experiment 1, we also looked at
environments containing two nutritionally imbalanced but complementary foods. In these en-
vironments, the response of K to increasing c resembled that in 3-food environments (see S1
File).

Experiment 2: Underlying Mechanisms
Proximate mechanism. To understand the mechanism underlying the effects of competi-

tion on nutritional latitude observed in Experiment 1, we allowed the model to run for a single
generation (500 iterations), with 150 individuals, half of which expressed high nutritional
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latitude (K = 0.85) and half low nutritional latitude (K = 0.25). For this experiment we used a
3-food environment containing one balanced and two moderately imbalanced, but nutritional-
ly complementary foods. The performance of the two strategies was assessed at a moderate
level of competition (c = 0.683), where low K appears optimal and at a higher level of competi-
tion (c = 0.767), which selected for high K. We performed 30 replicates of each parameter set
and recorded five variables. First, we recorded for each individual the mean of the angular dif-
ference between the food rail for the food consumed at each time step and the ideal food rail
that would guide them to the IT (β, see Models, Equation 5). A smaller β indicates an animal

Table 1. Model parameters and nomenclature.

Name Notation Description Value
Global Parameters
and Variables

Intake Target IT The intake target is an (x, y) coordinate in the nutrient space that depicts the
ideal amount and blend of nutrients an individual.

(500, 500)

Food Value V The amount of carbohydrate in a food for 1 unit of protein. Note that there is a
separate V for each food in the environment.

Combinations of 0.0625, 0.5, 1,
2 and 16 were used.

Food Abundance a A variable that governs the number of individuals that can feed at any one time
and thus the level of competition, via Equations 1 and 3 (note that in Lihoreau
et al. [5], this parameter is termed c).

Values of 0.1 through Nfood were
assessed.

Number of Foods Nfood The number of different food sources that are available at any one time. 2 or 3.

Competition c The intensity of competition present in the model, which was manipulated by
varying food abundance, a.

Equation 3.

Maximum Consumption φ The maximum amount of food that an individual can eat in one time step. 2 (see 'Initialisation')

Feeding Individuals Nind The number of individuals in the environment. 150

Dominance Constant η A constant denoting how difference in fitness affects the probability of the
outcome of a dominance interaction.

10, 20 and 25; see [5].

Fitness Constant μ A constant denoting how distance from the IT affects fitness. 2; see [5].

Individual Parameters
and Variables

Nutritional State NS An individuals (x, y) coordinate within the environment. Variable (x, y)

Fitness F The fitness of an individual, which is maximised when the individual reaches the
IT.

Equation 6.

Appetite A The amount of food an individual would eat to get as close as possible to the IT
on the food being consumed; i.e. how far would an individual move through the
space to maximise its fitness on a given food.

Equation 5.

Nutritional Latitude K An individual, heritable and mutable variable that determines how likely an
individual is to leave an inadequate food source—Pleave.

Heritable.

Probability of
Dominance

Qij The probability of the ith individual displacing the jth in a dominance interaction. Equation 2.

Ideal Vector VT The hypothetical vector along which an individual would travel to reach the IT
on an ‘ideal’ food.

Variable (see ‘Eat‘)

Angle of the Food Rail af The angle of the food rail on which the individual is feeding. Variable (see ‘Eat‘)

Angle of the 'Ideal' Food
Rail

αideal The angle of the ideal food rail that would connect the individual's nutritional
state with the IT.

Variable (see ‘Eat‘)

Distance to IT DN The Euclidean distance between the individual's nutritional state and the IT. For
the calculation of fitness F, this is treated as the proportion of the total distance
an individual must cover over the period of the simulation to reach the IT (i.e.
equivalent to [5]).

Variable

Probability of Leaving
Food

Pleave The probability that an individual will spontaneously leave an inadequate food
source, which is governed by K and the quality of food.

Equation 7.

Parameters with our model, their notation, description and modelled values thereof.

doi:10.1371/journal.pcbi.1004111.t001
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that has taken a more direct route to the IT; i.e. a mean β = 0 would be an animal that only ate
foods with the target balance of nutrients (e.g. Food B, Fig. 1). Second, we recorded the number
of iterations that each individual spent displaced from food by the end of simulation. This is a
measure of the rate at which an animal eats and thus accrues fitness. Third, we recorded the fit-
ness (F) of each individual (see Models, Equation 6). Fourth, we recorded the cumulative num-
ber of contests that an individual initiated as the simulation progressed. Finally, we recorded
the proportion of all contests that an individual won relative to the number of contests they
were involved in (i.e. win rate; referred to as dominance index in [5]).

Where competition was moderate (where c = 0.683), individuals with low K had the lowest
mean β, indicating that they ate more foods with an ideal nutritional balance (low K; β = 30.97;
high K; β = 36.48). However, low K also resulted in a greater mean number of iterations for
which individuals were displaced from food by the end of the simulation (low K; 30.93 itera-
tions; high K; 22.71 iterations). Where competition was more intense (c = 0.767), low K still
resulted in a lower β (low K; β = 11.39; high K; β = 17.38), but at the cost of a much greater
mean number of iterations displaced from food at the end of simulation (low K; 174.9 itera-
tions; high K; 124.5 iterations). Individuals with a lower K value thus sacrificed the short-term
advantage of rapid movement through the nutrient space (by spending more time displaced

Fig 2. Model Results in Different 3-Food Environments. The effects of increasing competition, c (Equation 3), on the mean level of nutritional latitude, K,
(± the 2.5th and 97.5th percentile; dashed line) that is stable under differing nutritional environments containing 3 foods. Data are based on 30 model runs.
Data from levels of competition above which the population could not consistently survive (i.e., extinction, given by a bold grey line) have been removed. A
geometric visualisation of each environment is given; lines and a crosshair depict food rails and the intake target, respectively.

doi:10.1371/journal.pcbi.1004111.g002
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from food), for the long-term benefit of attaining a nutritional state closer to the IT (by main-
taining a low mean β).

The effects of these different K strategies on fitness under different levels of competition are
shown in Fig. 4A. Where c = 0.683, differences in the rate that individuals accrue F are small
and ultimately by the end of the simulation individuals with low K (as a result of maintaining
low β) are nearer the IT and have the highest fitness (Fig. 4A). In contrast, where c = 0.767 dif-
ferences in the rate of fitness gain between K strategies are high; high K being associated with
most rapid increases in F, a difference that becomes more pronounced as the simulation pro-
gresses (Fig. 4A). The increasing gulf in fitness is explained by the fact that individuals with a
low K engage in more contests in an attempt to maintain a low β (i.e. obtain balanced foods;
Fig. 4B). Where competition is weaker, eventually individuals with low K begin to win more
contests because the differences in the rate of fitness gains are small and the long-term fitness
benefits of maintaining low β begin to pay off (Fig. 4C). In contrast, where c = 0.767 low K indi-
viduals still engage in a high number of contests (Fig. 4B), but have a very low relative fitness (a
result of having spent a large number of iterations displaced from food), and as a result have a
low win rate (Fig. 4C). In turn, where competition is intense, the poor win rate, large number
of contests and relatively poor fitness associated with low K feedback negatively on
one another.

Fig 3. Model Results in Different 2-Food Environments. The effects of increasing competition, c (Equation 3), on the mean level of nutritional latitude, K,
(and the 2.5th and 97.5th percentile; dashed line) that is stable under differing nutritional environments containing 2 foods. Data are based on 30 model runs.
Data from levels of competition, above which the population could not consistently survive (i.e., extinction, given by a bold grey line), have been removed. A
geometric visualisation of each environment is given; see Fig. 2 legend for details.

doi:10.1371/journal.pcbi.1004111.g003
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Evolutionary dynamics. Exploratory analysis suggested that frequency dependent effects
might underlie the rapid shift from low to high nutritional latitude with increasing competition
(Figs. 2 and 3). To further explore this idea we repeated the single generation experiment, but
co-varied the proportion of the population adopting low and high K strategies (K = 0.25 and
K = 0.85) and the level of competition (c). At the end of each replicate model run, we recorded
the mean fitness of individuals with each K.

The effects of the frequency of individuals with high nutritional latitude (K) on the fitness at
c = 0.683, 0.725 and 0.767 (values over which a transition between optimal strategies occurs)
are given in Fig. 5. Where competition was weaker, low K individuals had the highest fitness,

Fig 4. The Effects of K on VariablesWithin a Single Generation Over Time. The mean A) fitness, B)
number of contests and C) win rate of individuals with K = 0.25 (black) and K = 0.85 (red) over time within one
generation, when competition, c (Equation 3) is 0.683 (left panels) and 0.767 (right panels). Each panel is
based on the results of 30 independent model runs, each with 75 individuals with each K value.

doi:10.1371/journal.pcbi.1004111.g004
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regardless of the proportion of the population with high K. In this situation, high K will not be
selected for, clearly being the least fit strategy, regardless of its prevalence. Where competition
is more intense (c = 0.725), increasing the frequency high K individuals decreases the mean fit-
ness of low K individuals to a large extent (Fig. 5B). As a result, when at a high frequency (i.e.
> 60% of the population) high K becomes the fittest strategy relative to low K. It is worth not-
ing that when c = 0.725, high K would only be selected for once the prevalence of strategy
reached 60%. Where competition is intense (c = 0.767) high K is clearly the fittest strategy re-
gardless of its prevalence (Fig. 5C), and will be selected for. However, as high K becomes more
prevalent, it also decreases the mean fitness of all individuals, but those with low K are more se-
verely affected (Fig. 5C). Although high K individuals maximise their fitness when at low fre-
quency (apparent negative frequency dependence), alleles for the strategy actually experience
positive frequency dependence as their fitness relative to lower K individuals increases with in-
creasing prevalence high K (Fig. 5C). Interestingly, the spread of high K has the overall effect of
decreasing mean population fitness. Where all individuals in the population adopt high K indi-
vidual fitness is actually lower than had all individuals maintained low K (Fig. 5C).

Experiment 3: Effects of Fitness on Outcomes of Dominance
Interactions
In our model, the parameter η (see Details in Models and Table 1) is the power of the relative
nutritional states (fitness; F) of the ith and jth individuals to predict the outcome of a dominance
interaction between these individuals. Given that we are largely concerned with species for

Fig 5. The Effects of the Proportion of the populationWith HighK on Fitness at the End of a Single Generation. The effects of the proportion of the
population with high K (K = 0.85) on the fitness of mean fitness of low K individuals (K = 0.25; black lines), high K individuals (red lines), the whole population
(dashed green lines), and the relative fitness of high K individuals (fitness of high K—fitness of low K; blue line lower panels) at the end of a generation, under
A) c (Equation 3) = 0.683, B) c = 0.725 and C) c = 0.767.

doi:10.1371/journal.pcbi.1004111.g005
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which ability in dominance interactions is strongly correlated with nutritional state (see Lihor-
eau et al. [5]), in the above results η is assumed to be high (η = 25). We now explore the effects
of the intensity of competition (c) in scenarios where there is greater stochasticity in the out-
come of contests over food; η = 20 and η = 10.

Where η was set at a lower levels, increasing the intensity of competition had the same qual-
itative effect on the evolution of nutritional latitude (K) as described above; i.e. at low c a range
of low levels of nutritional latitude appear optimal, but a transition to high K is favoured at c
greater than 0.733 (Figs. 2 and 6). However, at lower levels of η the intensity of competition
that lead to population extinction was decreased. With η = 10 the population could not consis-
tently sustain itself above values of c of 0.833 (Fig. 6B). In an equivalent nutritional environ-
ment with η = 25 the population could not consistently sustain itself above values of c = 0.8667
(Fig. 2). These results indicate that having a stable dominance hierarchy, which is based on
nutritional state can allow the population to better survive poor nutritional environments. We
further discuss the biological implications of this finding below (see Future Directions in
Discussion).

Fig 6. Model Results in Different 3-Food Environments with Reduced η. The effects of increasing competition, c (Equation 3) on the mean level of
nutritional latitude, K, (and the 2.5th and 97.5th percentile; dashed line) that evolves under a 3-food environment, when the model is run with A) η = 20 and B)
η = 10. All data are based on 30 model runs. Data from levels of competition, above which the population could not consistently survive (i.e., extinction, given
by a bold grey line), have been removed. A geometric visualisation of the environment is given; see Fig. 2 legend for details.

doi:10.1371/journal.pcbi.1004111.g006
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Experiment 4: Truncated Selection
In the results described above, selection acts via two mechanisms. First, only those individuals
able to attain fitness greater than 0.5 within 500 iterations are assumed to be in good enough
condition to breed. Second, among those individuals fit enough to breed, fitness-proportionate
selection operates [32]. The sensitivity of our results to this general selection mechanism was
assessed by running the model with an alternative mechanism, truncated selection [29]. In this
instance, the first 10% of the population to attain fitness over a cut-off are assigned as parents
for the next generation. In our experiments cut-offs of 0.5 and 0.9 were assessed.

Under truncated selection extinctions do not occur as the population is given a flexible
amount of time to reach the fitness cut-off. We evaluated the effects of truncated selection on
the model’s output in a 3-food environment with severely imbalanced foods (such an environ-
ment produced results typical of most other environments; Fig. 2B). In the absence of competi-
tion (c = 0) there was little or no selection on nutritional latitude: mean K = 0.5 with large
variance (Fig. 7). However, low and moderate levels of competition selected for very low nutri-
tional latitude (Fig. 7). As was the case under our general selection mechanism, a transition to
increased nutritional latitude was still favoured under moderate to high competition (Fig. 7).
However, K was not increased to anywhere near as high a level as under an equivalent nutri-
tional environment with our general selection mechanism (Figs. 2 and 7). Finally, at very high

Fig 7. Model Results in Different 3-Food Environments with Truncated Selection. The effects of increasing competition, c (Equation 3) on the mean
level of nutritional latitude, K, (and the 2.5th and 97.5th percentile; dashed line) that evolves under a 3-food environment, when the model is run with truncated
selection. All data are based on 30 model runs. A geometric visualisation of each environment is given; see Fig. 2 legend for details. The first 10% of the
population to cross the dashed line (F = 0.9 and 0.5; (A) and (B), respectively) in the geometric visualisation contribute to the subsequent generation.

doi:10.1371/journal.pcbi.1004111.g007
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levels of competition a return to low K was favoured (Fig. 7). The contrasting results of experi-
ments 1 and 4 clearly illustrate that the mode of selection affects how nutritional strategies re-
spond to contest competition. The implications of this finding for the biological interpretation
of our model are discussed below (see Future Directions in Discussion).

Discussion

Model Outcomes and Biological Implications
We developed an ABM that combines principles of the GF with an evolutionary algorithm to
explore how contest competition may affect the evolution of animal nutritional strategies. Spe-
cifically, we modelled the extent to which individuals consume nutritionally imbalanced foods
that will not guide them directly to their intake target (nutritional latitude, K). In most of the
nutritional environments we modelled, no competition and weak to moderate competition fa-
voured low consumption of a suboptimal food. However, given that we observed high variance
in stable values of K, it seems likely that there is no single optimal strategy. Rather, any fairly
low level of nutritional latitude performs well. In contrast, moderate to severe competition ap-
pears to favour the consumption of more of an imbalanced food before seeking an alternative,
than when competition is weak (i.e., they evolve increased nutritional latitude), potentially
even consuming that food until reaching the point of nutritional compromise (see [23]). The
balance of nutrients in the foods available also influences the optimal level of nutritional lati-
tude. For example, in a 2-food environment that contained one highly imbalanced and one bal-
anced food, a very low level of nutritional latitude was favoured regardless of competition
(Fig. 3B). Thus, considering the nutritional composition as well as the amount of available
foods is essential if we are to understand the role of competitive interactions in shaping the evo-
lution of nutritional strategies.

Our model suggests that in social groups where the availability of nutrients is highly vari-
able, plastic nutritional latitude should be adaptive so that individuals can alter their strategy in
response to the intensity of competition. Several biological systems are well suited to empirical
exploration of this idea. In social spiders, experimental evidence suggests that access to lipids
governs reproductive asymmetry [13]. The manipulation described by Salomon et al. [13] (cre-
ating prey that vary in lipid content) could be employed, and then the behaviour of marked in-
dividuals within these groups observed (such as described in Whitehouse and Lubin [12]). An
alternative model is the house cricket (Acheta domesticus), a species with well-studied nutri-
tional requirements [33–38]. Males are known to compete with one another for food; more-
over, sexual selection likely results in reproductive asymmetry, with larger males most likely
able to meet the energy requirements for intra-sexual competition [39–43]. Contest-competi-
tion and aggression over food and mate access are also observable phenomena in male fruit
flies (Drosophila melanogaster; [44,45]). This species also offers numerous other advantages in-
cluding, being a model organism in genetics, being well studied with regards to its nutritional
requirements and fitness consequences of nutritional imbalance and being suitable for artificial
selection [1,2,46–48]. Using our ABM it will be possible to generate predictions for any number
of nutritional scenarios specific to the model organisms described above. For example, consid-
ering spiders one may wish to explore a situation in which as food becomes scarce (i.e., compe-
tition increases in intensity), certain food rails appear only sporadically [49,50].

At the inter-species level our model suggests a role for contest competition and reproductive
skew in shaping the evolution of dietary breadth. Specifically, consistent intense competition
for access to a food containing a limiting nutrient, which results in reproductive skew, can se-
lect for high nutritional latitude, hence contributing to nutritional generalism. This hypothesis
could be tested in a comparative nutrition framework (e.g., [31]), focussing on the intensity of
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contest competition and reproductive skew within groups of social generalists and specialists.
Such approaches have, in the past, proved useful for studying the evolutionary mechanisms un-
derlying dietary breadth, specifically suggesting that nutritional heterogeneity may lead to the
adoption of specialist/generalist-specific rules of compromise ([23]; further discussed in Future
Directions).

Additional to insights into evolving nutritional strategies, our model supports predictions
that contest competition over foods can lead to dominance hierarchies and reproductive asym-
metries in social groups, because dominant individuals monopolise key nutrients for reproduc-
tion [5,8,13]. Contests for limited food can cause between-individual variance in reproductive
output, regardless of the level of nutritional latitude or the nutritional environment. Given an
apparent link between limited resources and alloparental care [51], contest competition over
nutrients may be a mechanism forcing groups of animals on to the continuum from coopera-
tive breeding, where helpers occasionally provide care to the offspring of breeders, to eusociali-
ty, characterised by a complete division of labour [52]. We note that our models represent a
scenario in which individuals are unable to leave the group, even when competition becomes
strong, due to some unstated ecological constraint. If future models explicitly focus on how nu-
trition and contest competition contribute to the evolution of sociality, they will likely want to
vary the strength of constraints that keep individuals within the group.

Our models highlight some interesting relationships between nutrition, individual-level fit-
ness and mean population fitness. Specifically, these models show that where individual nutri-
tional state is a strong predictor of performance in dominance interactions (here η) and in turn
reproductive asymmetry (i.e. a high variance in fitness), the population is better able to survive
when nutrients are severely limiting. Accordingly, previous theoretical and experimental stud-
ies in social spiders have also suggested a strong dominance hierarchy ensures that the colony
is able to survive resource poor periods, as at least a few females are able to monopolise enough
nutrients to breed [8,11]. We also note that the spread of high nutritional latitude under strong
competition bears some similarities to an evolutionary “tragedy of the commons” [53], because
once the strategy becomes highly prevalent the mean fitness of the population becomes de-
pressed to a lower level than might be the case if all (or the vast majority of) individuals to
maintain low nutritional latitude.

Future Directions
Our evolutionary model could be further expanded to give a more detailed representation of
specific biological systems. First, we assumed that the fitness payoffs surrounding the IT are
symmetrical. Geometric nutritional studies have shown that in some instances the fitness land-
scapes associated with the intake of nutrients may be asymmetrical [25]. A case in point is the
predatory ground beetle (Anchomenus doralis), where a female’s egg production displays an
asymmetrical response to protein and lipid intake when mapped as a response landscape onto
a protein-lipid nutrient-space [54]. Models considering the effects that asymmetrical fitness
landscapes have on the evolution of nutritional strategies themselves, and in turn the conse-
quences for social structure, are particularly exciting avenues of investigation. Second, geomet-
ric nutritional studies also demonstrate that different species follow different rules of
compromise (the extent to which they consume excesses of one nutrient relative to the IT to
gain another which is limiting in the diet). The model described here conforms to what is
known as the ‘nearest distance’ rule of compromise [23]: individuals seek to attain a nutritional
state that minimises the Euclidean distance from the IT (see Models). Some species, such as the
migratory locust (Locusta migratoria), appear to conform to such a rule of compromise when
confined to a single food [31]. However, other rules of compromise are also followed. For
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example, the desert locust (Schistocera gregaria) follows what is known as an ‘equal distance’
rule of compromise, eating more of an imbalanced diet, over-consuming the excess nutrient to
a greater degree (and under-consuming the deficient nutrient to a lesser degree) than L.migra-
toria, under the same no-choice experiment [31]. Evidence from this and other examples using
the comparative approach suggests that the adoption of these two different rules of compro-
mise closely associates with dietary breadth, with nutrient specialists adopting the nearest dis-
tance rule we implement here [23]. The study of the co-evolution of nutritional rules of
compromise, dietary breadth, fitness-landscapes and other nutritional strategies (e.g. nutrition-
al latitude) remains largely theoretical [23,25]. However, with the increasing application of
nutritional geometry to a wider range of species, both in the lab and in the field, the compara-
tive studies required to untangle the co-evolution between the aforementioned traits should
soon be possible [23].

Within the selection mechanism implemented here, individuals must first attain a certain
nutritional state to breed. Amongst those individuals with a high enough fitness to breed, rela-
tive fitness (determined by proximity to the IT) then governs overall representation in the sub-
sequent generation (i.e., fitness proportionate selection; [32]). Thus, what we term the ‘general’
selection mechanism is most analogous to systems where reproductive asymmetries arise when
resources become limiting. This mechanism of selection is typical of experimental outcomes in
some social systems. For instance, female social spiders that do not attain enough nutrients
(lipids) to reach a mature size at the end of the season are not capable of breeding, and larger
individuals produce more offspring ([8,13,55–57] c.f. [15]). We also explored the effects of
truncated selection on the model output. Whilst these two selection regimes produced some
broadly similar results, there were also differences; namely, with truncated selection there was
a lack of selection on nutritional latitude in the absence of competition, but low nutritional lati-
tude was favoured under even weak competition. Truncated selection is most analogous to so-
cial systems, where dominance hierarchies and reproductive asymmetries are always present,
regardless of food availability. For example, in eusocial wasps (Polistes; the inspiration for the
original manifestation of the contest competition model we implement [27]) linear hierarchies
form amongst females, with reproduction limited to the individual at the top (or the top few;
[58]). For such species, where reproduction is always limited to a few individuals (perhaps
those best able to track the IT), a model operating truncated selection may be most appropriate.
Additionally, it occurs to us that artificial selection experiments can use truncated selection;
i.e., the top few performing individuals are selected for breeding (e.g. [59]). In the future, geo-
metric ABMs such as ours may be used to generate predictions for selection experiments on
nutritional strategies. However, those models should explicitly incorporate truncated selection
as other modes of selection may produce inaccurate predictions.

The models described here make simplifying assumptions about within population varia-
tion in nutritional requirements and the effects of nutritional state on fitness. For example, we
only consider a single sex although sex differences in nutritional requirements may be ubiqui-
tous (e.g. [60]). Such assumptions seem justifiable on the basis of the biological systems that we
are interested in. Considering sex specifically, the relationship between contest competition, re-
productive asymmetry and nutritional state is often only profound (or well understood) in one
sex. For example, in populations of social spiders female sex ratio bias tends to be very strong
and males seem largely absent [13,14]. Thus it seems reasonable to assume that males play a
relatively minor role in competition over nutrient access. When modelling the relationship be-
tween nutritional state and other social phenomenon (e.g. collective behaviour and communal
feeding [5]), however, it may be more realistic to model such variation. To incorporate this var-
iation, rather than modelling a single intake target as we do here, one could include a bi-modal
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distribution of intake targets representing the differential requirements of each sex and individ-
ual heterogeneity simultaneously.

In this instance, the combination of evolutionary algorithms, ABMs and the GF has allowed
us to produce testable experimental predictions for how intra-specific competition affects the
evolution of nutritional latitude and dietary breadth. The wider application of this integrated
approach could be applied to assess how other nutritional strategies and ecological factors in-
teract [30]. For instance, Lihoreau et al. [5] explore how collective decision-making can opti-
mise the nutritional decisions of entire groups, a phenomenon that may be applicable to
animals exhibiting a range of social interactions [61–63]. By expanding that model with an evo-
lutionary algorithm, it would be possible to generate predictions for how nutritional strategies
and social phenomenon co-evolve. The next step in combining evolutionary algorithms with
GF-based ABMs will be to use spatially explicit models [30]. In this way researchers will be able
to model the evolution of nutritional strategies in complex environments that are closely repre-
sentative of real world ecosystems.

Models
Models were programmed in the software Netlogo [64]. Graphs were created and statistical cal-
culations performed with R version 3.1.1 [65]. The model is described following the overview,
design and details format of ABM description as widely recommended [66–68]. The code for
the model can be found in S2 File.

Overview
Purpose. This model has been developed to explore how ecological factors affect nutri-

tional strategies. Here, we have expanded the model of Lihoreau et al. [5] with an evolutionary
algorithm to explore how intra-specific contest competition affects the evolution of
nutritional latitude.

Entities, states, variables and scales. The model consists of individuals and their environ-
ment. As in the GF, the environment is a Cartesian plane (i.e., an x-y plane) representing the
nutrient space. The nutrient space is made up of two nutrients, which are represented by (x, y)
coordinates. We refer to the macronutrients protein (P) and carbohydrate (C), although our re-
sults are not specific to P and C, and can generally be thought of as any two nutrients. An indi-
vidual’s (x, y) position in the nutrient space is its nutritional state. Individuals aim to navigate
their nutritional state from an initial point of (0, 0) to the intake target (IT); an (x, y) coordinate
that represents the ideal amount and balance of P and C (see examples in Fig. 1).

Individuals must eat foods (f) to move through the environment towards the IT, but can
only feed on one food at a time. Thus, individuals must move in parallel with the food rail on
which they are feeding (αf; Fig 1; all parameters are described in Table 1). An individual may
leave an inadequate food to find an alternative, the likelihood of which is governed by the pa-
rameter K (i.e., the nutritional latitude). An individual’s K is genetically determined by a single
inherited mutable value. The overall amount of foods available may be limited. To eat a food
that is ‘at capacity’, that is, which already has a full complement of consumers, an individual
must first displace another via a dominance interaction. An individual’s ability in dominance
interactions is governed by its fitness (F), which is a function of its distance to the IT
(closer = fitter). By adjusting the abundance of food (a), we are able to manipulate the level of
contest-competition (estimated as Equation 3 below). After 500 iterations a new generation be-
gins, which is made up of offspring with K values inherited (with mutation) from the fittest in-
dividuals from the previous generation. The model runs for 1000 generations under varying
levels of contest-competition, and we measure the evolution of nutritional latitude (K).
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All model parameters described above and below are summarised in Table 1 and their mode
of action is outlined in detail below (see Details below).

Process overview and scheduling. At every time step individuals perform the following
four processes (name of process given in parentheses) in the given order: (1) those without a
food source select a food at random and fight for it if necessary (‘Choose Food’), (2) calculate
their appetite and eat (‘Eat’), (3) recalculate their fitness based on their nutritional state (‘Calcu-
late Fitness’) and (4) may spontaneously leave a food source with a probability that is function
of nutritional latitude, K (‘Leave’). An overview of the model is given in Fig. 8. Finally, after a
500 time steps a new generation is spawned from the previous generation, and the parental
generation dies (‘Reproduce’). Individuals are processed in random order and each individual’s
state variables are updated immediately after it completes a process. All individuals complete
each process before the model progresses to the next process.

Design Concepts
Emergence: We are interested in the emergence of the optimum value of nutritional latitude
(K) under varying levels of competition (c).

Observation: Values of K are observed at the end of 1000 generations.
Objectives: The objective of all individuals is to move through the nutritional space to attain

a nutritional state as close to the IT as possible after 500 time-steps.
Sensing: Individuals are able to sense the number of other individuals currently feeding on a

given food.
Interaction: Individuals may displace one another from a food source via a

dominance interaction.
Stochasticity: Several events are determined by Bernoulli trials, and thus occur with given

probabilities, independently of any others. For example, the probability that one individual dis-
places another from a food source is a function of the fitness of the two individuals. Such func-
tions are outlined in detail below (see Details below).

Details
Initialisation. At initialisation the IT is set, as are parameters that govern the nutritional

content of foods (i.e., V and αf), and Nind individuals are created. All individuals are initialised
with K = 1. Individuals are given a location (i.e., a nutritional state) of (x, y) = (0, 0). In the
model of Lihoreau et al. [5] the position of the IT is set at a distance of 1 from the initial nutri-

tional state and individuals can eat a maximum (φ) of
ffiffiffi

2
p

=500 per time step. To aid with visu-
alisation in Netlogo, the IT is set at a position in the environment of (500, 500). This difference
between our model and that of Lihoreau et al. [5] is corrected by rescaling φ.

Model processes. Choose food: As in Lihoreau et al. [5], individuals that are not located on
a food select one at random and then assess whether the number of individuals feeding on the
chosen food is equal to the capacity. The capacity is given by Equation 1:

capacity ¼ a
Nfood

Nind: ð1Þ

If the selected food is below capacity, the individual may take a place on the food rail, ready
to feed (see ‘Eat’ below). However, if a food is at capacity the individual must displace a ran-
domly selected ‘opponent’ via a dominance interaction. The probability of the ith individual
displacing the jth is given by Qij. This probability is the same as that in the contest competition
model of Bonabeau et al. [27], although in that model ability in dominance was determined by

Nutritional Strategies and Contest Competition

PLOS Computational Biology | DOI:10.1371/journal.pcbi.1004111 March 27, 2015 17 / 24



Fig 8. Flow Diagram of Model Processes. A flow diagram of the model. After 500 iterations of these
processes, a new generation begins. Note that all individuals undergo each process before the model moves
on to the next process (i.e. for the details of each process see Details in Models) and individuals are
processed in a randomised sequence.

doi:10.1371/journal.pcbi.1004111.g008
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the abstract value ‘force’. Following Lihoreau et al. [5], individuals’ ability in contests is depen-
dent on nutritional state as given by Equation 2:

Qij ¼
1

1þ e�ZðFi�FjÞ ; ð2Þ

where Fi and Fj are the respective fitness of the two individuals (see ‘Calculate Fitness’ below)
and all other parameters are as in Table 1. If the challenger is successful in displacing the oppo-
nent, then the challenger will take a place on the food and the opponent will be displaced. If the
challenger is unsuccessful it will remain displaced for a time step. The variable ηmaybe thought
of as the power of nutritional state (F) to predict success in contests over food. For the most
part we assume that this value is high as we are specifically interested in how nutritional strate-
gy is affected by food availability in systems where nutritional state is a strong predictor repro-
ductive dominance (e.g. social spiders [16]). However, we also explored how a reduced η
affects the models behaviour.

To manipulate the intensity of competition within the model, we varied the capacity (Equa-
tion 1) of foods to support the population via manipulating the value of a (the abundance of
food; Table 1). Where foods were more abundant competition was weaker. To aid interpreta-
tion, competition (c) is then given by Equation 3:

c ¼ 1� a
Nfood

: ð3Þ

Thus, when a is equal to Nfood, individuals can move freely between food rails, and c = 0; i.e.,
competition is absent. Note that following Equations 1 and 3, c is 1 minus the proportion of the
population that each food rail can support on one time step.

Eat: The ‘Eat’ process is summarised in Fig. 9. Eating consists of moving through the nutri-
ent space at an angle (or heading) given by the food rail for the food on which the individual is
eating; αf. The distance an individual moves (i.e., the amount eaten) is governed by the individ-
ual’s appetite (A), which is assumed to conform to the ‘nearest distance’ rule of compromise
[23] and the maximum amount of food an individual can eat (φ) following Equation 4:

distancemoved ¼ minfA;φg; ð4Þ

where A is calculated as Equation 5:

A ¼ kVtkcosb; ð5Þ

where β is the angle between the food rail on which the animal is feeding (αf) and the ‘ideal’
food rail that joins the individual’s current nutritional state with the IT (αideal) and VT is the
vector connecting the individual’s current nutritional state and the IT; A thus gives the distance
the individual would move to reach the point of nutritional compromise (Fig. 9). If this dis-
tance is greater than the maximum amount the individual can eat in one time-step (φ) then the
individual’s nutritional state moves by φ.

Calculate fitness: The IT is the point in the nutrient space that maximises biological fitness.
As in Lihoreau et al. [5] we assume that fitness (F) is a function of the distance between an indi-
viduals nutritional state and the IT, as given by Equation 6:

F ¼ e�mDN : ð6Þ
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Thus, as an individual nears the IT from any direction in the nutrient plane, its fitness in-
creases towards a maximum value of 1. Here we correct DN to be the proportion of the total
distance an individual must move from the beginning of the simulation to reach the IT, thus
making our model equivalent to that described in [5].

Leave: The ‘Leave’ function is the same as that implemented in Lihoreau et al. [5], although
here K (nutritional latitude) is an individual-level variable rather than a fixed global parameter,
and K as we model it here is equivalent to 1—K in Lihoreau et al. [5]. Individuals have a proba-
bility (Pleave) of spontaneously leaving a food before having satisfied their appetite. This proba-
bility is governed by the quality of the food and K, following Equation 7:

Pleave ¼ ð1� KÞ jaideal � af j
0:5p

þmaxf0; ðK φ� A
φ

Þg; ð7Þ

where αf and αideal are measured in radians. Thus, with decreasing K and an increasing angular

Fig 9. The Models Implementation of the Geometric Framework (GF). An example of our implementation
of the GF, redrawn from Lihoreau et al. [5]. The x and y axes represent protein (P) and carbohydrate (C). The
intake target (IT) is denoted by the red crosshair and the individual’s current nutritional state by the black
point. The food rail for the food an individual is consuming is given by the black line (f) with the angle αf. The
amount of food an individual would eat to maximise its fitness is given by the individual’s appetite (A). A is
governed by the nearest distance rule of compromise; an individual gets as close to the IT as the food rail
allows [21]. A is the scalar projection of the Euclidean distance between an individual’s nutritional state and
the IT on to the food rail f. A is found by estimating the ‘ideal’ food rail that connects the individual’s nutritional
state with the IT (dashed line with angle αideal), the magnitude of the vector along which an individual would
travel to reach the IT (||VT||) and the angle between αf and αideal (β); Equation 4. Note that the amount an
individual can eat in one time step has a maximum value of φ.

doi:10.1371/journal.pcbi.1004111.g009
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difference between αf and αideal, an individual becomes more likely to leave the food before
having satisfied their appetite.

Reproduce: After 500 iterations of the above processes, a new generation begins. Nind indi-
viduals are created and these offspring have their nutritional state set to (0, 0). Parents for the
new generation are assigned via two mechanisms of selection. First, only those individuals that
have been able to attain a fitness (F) value greater than 0.5 are assumed to be in good enough
condition to breed; one may consider this equivalent to having attained enough nutrients to
have developed to maturity (e.g. the final moult in female social spiders which appears to be a
function of nutrition [8]). Second, among those individuals who have a fitness over 0.5, fitness
proportional selection operates [29]; i.e., an individual with a higher fitness has a greater proba-
bility of being selected as a parent. Each offspring ‘selects’ a parent and inherits that individual’s
level of K. This value of K then mutates, by adding a value drawn from a random normal distri-
bution with a mean of 0 and a standard deviation of 0.025, and K is bounded between 0 and 1.
Kmutates as a random walk, thus, in the absence of selection, all values of K have an approxi-
mately uniform probability of arising. Note that under this selection regime it is possible that
no individual is able to reach fitness of 0.5 within 500 iterations (e.g., where competition is se-
vere). In such a situation, we consider the environment so nutritionally poor that the popula-
tion is driven to extinction. Data from such replicates are disregarded, but these replicates are
noted in the results.

The number of iterations (here 500) that make up a generation is equivalent to the number
of feeding opportunities before the end of the reproductive period (e.g. the breeding season in
social spiders [13]; see Introduction). The generation time is thus only meaningful when con-
sidered alongside the distance through the nutrient-space that an individual must cover to
reach the IT, and the amount of food it is possible to eat at each feeding opportunity (i.e. here
from an initial x, y (0, 0) to the IT (500, 500) given φ = 2). Here we use 500 iterations because
in most biological circumstances, it seems realistic to assume that animals may reach the IT via
an indirect route without a fitness penalty (for many species there is no one food with a perfect
nutritional balance). Alternatively, it may not be necessary to eat at every available opportunity
in order to reach the IT. Thus, 500 iterations allow individuals to reach their IT via a range of
routes through the nutrient space, without necessarily compromising their fitness.

A more stringent approach would be to make the IT the furthest point along the ideal food
rail that an individual could travel in one generation, assuming they eat at each iteration. Given
that the IT may be viewed as the point in the nutrient space that maximises fitness one may, in
some circumstances, justify the assumption that, ‘if individuals only ever ate foods with the
ideal nutritional balance at each available opportunity for their entire lifetime they would maxi-
mise fitness’; i.e. reach the IT. Note that under this circumstance one is making the assumption
that it is impossible to ‘over eat’ an ideal food. To test this more stringent set of assumptions we
could alter either the position of the IT or the number of iterations in a generation. We repeat-
ed all of the above experiments with a shorter generation time (354 iterations) for a fixed IT
and φ. These models produced the same qualitative conclusion; i.e. intense competition favours
high nutritional latitude, although there were some quantitative differences (see S1 File).

The general selection mechanism that we implement is representative of the biological sys-
tems on which our models are based; i.e. systems where variability in reproductive success
within a cohort can be attributed to access to nutrients. However, the sensitivity of our results
to the ‘general’ selection mechanism was also further assessed by running the model with trun-
cated selection [29]; see Future Directions in Discussion for a discussion of where the two ap-
proaches might be most appropriate.
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Model Testing
The model described here is determined to produce similar output as that in Lihoreau et al. [5]
by comparing the nutritional distribution of individuals with a single model run (comparison
between S1 File and Fig. 5.A in Lihoreau et al. [5]). We then performed exploratory analyses of
the model, which consisted of running the model over ten thousand generations, recording the
mean and K at the end of each generation. These results suggest that within 1000 generations K
reaches a stable equilibrium (S1 File). Nutritional environments and levels of competition (c)
were manipulated by varying the parameters (Nfood, V and a).
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