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Abstract
Pollinators, such as bees, often develop multi-location routes (traplines) to exploit subsets

of flower patches within larger plant populations. How individuals establish such foraging

areas in the presence of other foragers is poorly explored. Here we investigated the foraging

patterns of pairs of bumble bees (Bombus terrestris) released sequentially into an 880m2

outdoor flight cage containing 10 feeding stations (artificial flowers). Using motion-sensitive

video cameras mounted on flowers, we mapped the flower visitation networks of both forag-

ers, quantified their interactions and compared their foraging success over an entire day.

Overall, bees that were released first (residents) travelled 37% faster and collected 77%

more nectar, thereby reaching a net energy intake rate 64% higher than bees released sec-

ond (newcomers). However, this prior-experience advantage decreased as newcomers

became familiar with the spatial configuration of the flower array. When both bees visited

the same flower simultaneously, the most frequent outcome was for the resident to evict the

newcomer. On the rare occasions when newcomers evicted residents, the two bees

increased their frequency of return visits to that flower. These competitive interactions led to

a significant (if only partial) spatial overlap between the foraging patterns of pairs of bees.

While newcomers may initially use social cues (such as olfactory footprints) to exploit flow-

ers used by residents, either because such cues indicate higher rewards and/or safety from

predation, residents may attempt to preserve their monopoly over familiar resources

through exploitation and interference. We discuss how these interactions may favour spatial

partitioning, thereby maximising the foraging efficiency of individuals and colonies.
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Introduction
Understanding how foragers distribute themselves within and among resource patches is a cen-
tral question in behavioural ecology. Historically it was usually assumed that individuals select
and remain in the patches providing them with the highest rewards [1,2]. However, for most
animals, foraging decisions are complicated by several additional factors such as an individual’s
knowledge of their environment [3], the nutritional composition of foods [4], or their interac-
tions with social partners, competitors and predators [5,6].

Pollinators, for instance, often exploit complex foraging areas comprised of multiple flower
patches whose nectar rewards replenish over time [7]. Through repeated visits to familiar
places, individuals accumulate knowledge about the location and the profitability of flower
patches, enabling them to forage more efficiently than if they explored a novel environment
each time [8]. In many species of bees [9,10], butterflies [11], hummingbirds [12] and nectari-
vorous bats [13], foraging individuals regularly revisit flower patches in stable, repeatable
sequences called ‘traplines’. Recent studies on bumble bees collecting sucrose solution from
artificial flowers (equivalent, in terms of nectar profitability, to natural flower patches) have
begun to reveal how pollinators develop such movement patterns when foraging alone in
highly predictable environments, by prioritizing visits to the most rewarding flowers while
minimizing overall travel distances between them [14–16]. Whilst this is an important first
step, none of these studies have yet captured the considerable additional variation in nectar
rewards provided by flowers in field conditions due to the activity of other foragers competing
for the same resources [17–21].

Previous attempts to address this question suggest that foragers avoid extensive spatial over-
lap so that each specializes on a different subset of flowers within larger plant populations. For
instance, bumble bees tend to adjust the size of their foraging area in response to changes in
the density of conspecific foragers, either by increasing the number of flower patches they visit
following the removal of competing foragers [22–24], or by reducing the number of patches
they visit after the introduction of new foragers [25]. Similar observations were made with nest-
mates and non-nestmates, suggesting that bumble bees do not discriminate kin from non-kin
during foraging interactions [23,25].

In order to fully understand how these complex patterns of spatial resource partitioning
develop over time, as bees learn to exploit their foraging environment, it has now become cru-
cial to study the spatial movements of individual foragers, their behavioural interactions and
the potential consequences of such interactions on their future foraging decisions over several
consecutive foraging events. In principle, the presence of other foragers can have different
effects on a bumble bee’s foraging decisions depending on its experience of the environment.
Firstly, foragers can use social information, such as visual or olfactory cues inadvertently pro-
vided by conspecifics on flowers, to decide whether or not to visit flowers [26,27]. For instance,
inexperienced bees discovering a new foraging environment tend to copy the flower choices of
other foragers to identify the most rewarding flowers [28], whereas experienced individuals
tend to avoid flowers occupied by conspecifics whose nectar reserves are probably depleted
[29]. Secondly, when forager density is high, experienced bees may also try to preserve their
foraging area by increasing their visitation rates to particular flowers (exploitative competition
[18,21]) or by chasing potential competitors away (interference competition [17,19,20]). Since
bumble bees typically enter a foraging environment at different times, depending on their age
and the nutritional status of the colony [30], two foragers are unlikely to have the same knowl-
edge about available foraging opportunities. We therefore hypothesize that these natural
knowledge asymmetries among foragers have important consequences for their spatial foraging
strategies and, ultimately, on resource partitioning.
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To explore this possibility, we analysed the foraging patterns of pairs of bumble bees with
different levels of experience when exploiting a common array of artificial flowers in a large
outdoor flight cage. In each pair, a resident (experienced) forager was allowed to perform 25
foraging bouts before a newcomer (inexperienced) forager was released. Using motion-sensi-
tive cameras mounted on flowers, we mapped the network of flower visitation for each bee,
recorded their interactions on flowers and compared their foraging success for another 25 for-
aging bouts.

Materials and Methods
The study was conducted in August 2010 at the Centre for Agricultural Bioscience Interna-
tional (CABI) centre in Egham (Surrey, UK). The experiments were performed in a large flight
cage (length × width × height = 44 × 20 × 3 m, mesh size = 0.5 mm; see Fig 1a) erected on flat
pasture. Subjects were workers from a commercially reared Bombus terrestris colony (Syngenta
Bioline Bees, Weert, The Netherlands). The colony nest box was connected to a transparent
Plexiglas entrance tube fitted with a series of shutters to control all bee arrivals and departures.
All workers were marked on their thorax with individually numbered tags (Opalith Plättchen,
Christian Graze KG, Germany) within a day of emergence from pupae (eclosion). The colony
was provided with ad libitum defrosted, honeybee-collected, pollen directly into the nest box.
Foragers collected sucrose solution (40% v/v) from artificial flowers in the flight cage. All natu-
ral flowers inside the cage were removed.

Artificial flowers and video tracking
We used artificial flowers delivering sucrose solution (hereafter ‘nectar’) at a constant rate.
Each flower consisted of a landing platform, an electric syringe pump, a webcam and their sup-
ports (Figs 1b and 2a). The landing platform was a blue plastic disc (diameter = 60 mm)
mounted horizontally on top of a colourless, transparent plastic cylinder (height = 75 mm).
The circular shape of the landing platform was reminiscent of many natural flowers commonly
visited by bumble bees (e.g. Asteraceae). A small yellow circle (diameter = 20 mm), in the cen-
tre of the blue disc, highlighted the location of the feeding cup (capacity = 40 μL) from which
bees could collect nectar. The feeding cup was connected to an electric syringe pump (for
details see [31]) via a flexible plastic tube (internal diameter = 1 mm, length = 200 mm). As the
pump depressed the syringe plunger, nectar was pushed through the plastic tube and accumu-
lated in the feeding cup at a rate of 3.3 μL/min. The landing platform and plastic cylinder sat
on a clear plastic support (length × width × height = 300 × 200 × 180 mm) placed on the
ground (Figs 1b and 2a). Bees could access the landing platform equally well from all angles.
Two bees could extract nectar simultaneously from the same flower (S1 Video).

Bee visits to flowers were recorded automatically using motion sensitive video cameras [32].
A webcam (Logitech c250, Fremont, CA), fitted with a neutral density filter (Neutral Den-
sity = 0.6, Lee Filters, Andover, UK) to reduce the amount of light entering the lens, was
mounted on top of each flower (Figs 1b and 2a) and powered by a laptop computer running
motion detection software (Zone Trigger 2, Omega Unfold, Quebec, Canada). Each webcam
recorded a video clip (minimum duration 5 s) every time a bee moved into the camera’s field of
view until movement stopped, thus capturing complete flower visits from the point when the
bee landed to its departure (e.g. S1, S2 and S3 Videos). The average flower visit duration was
18.77 ± 0.71 s (mean ± standard error (s.e.), n = 5448 visits). Viewing the landing platform
from above enabled us to accurately identify bees (from their dorsal numbered tags), their
arrival and departure times, and whether they collected nectar from the feeding cup. Video
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Fig 1. Flight cage, artificial flowers and visual landmarks. (a) The flight cage in the experimental field (Egham, Surrey, UK). (b) Artificial flower consisting
of a blue horizontal landing platform, an electric syringe pump, a webcam and their supports (see details in Fig 2a). (c) A laptop protected by a golf umbrella
with a unique two-colour pattern acting as a three-dimensional landmark for the bees (photographs by Mathieu Lihoreau).

doi:10.1371/journal.pone.0150844.g001
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clips in which two bees visited the flower simultaneously also provided data about the nature
and frequency of behavioural interactions between foragers.

Experimental flower array
We used a regular hexagonal array of 10 flowers (Fig 2b), in which nearest neighbour flowers
were 9 m apart (e.g. flowers 1 and 4) and second nearest neighbour flowers were 15.8 m apart
(e.g. flowers 1 and 6). Testing bees with comparatively few distant artificial flowers increases
the probability that they develop efficient foraging routes, reducing travel distances between
the different feeding locations, just as they would do between flower patches under natural con-
ditions [14,15,16,32,33]. As bumble bees are unable to detect reflecting (non self-luminant)
visual targets presented against a vegetation background subtending a visual angle of ca. 3°
[34], the maximum distance at which a forager could distinguish a flower (overall dimension:
length × width × height = 400 × 300 × 500 mm) from the background is assumed to be 9.6 m.

Fig 2. Experimental design. (a) Schematic of an artificial flower and the video tracking system (drawing by Pierre Vedel). As the electric pump depresses
the syringe plunger, sucrose solution is pushed through a plastic tube and accumulates at a constant rate (3.3 μL/min) in a feeding cup (capacity = 40 μL)
accessed by the bee through a hole in the middle of the horizontal landing platform. A webcam connected to a laptop computer running motion detection
software is mounted directly above the landing platform. The webcam was fitted with a neutral density filter (Neutral Density = 0.6) placed on a truncated
cardboard cone, to reduce the amount of light entering the lens. Bee movements in the camera field of view trigger recording of a video clip (minimum
duration = 5 s), from which the bee’s tag number, its arrival and departure times, and any interactions with another forager can be identified (e.g. S1 and S3
Videos). (b) Spatial arrangement of the nest box, artificial flowers and laptops within the flight cage. Coordinates (x, y) of the nest box (black square), the pre-
training flower (open circle) and the test flowers (black circles numbered 1–10) are in metres. Distance between the nest box and the nearest test flower
(number 1) was 12.5 m. Distance between any two nearest neighbour test flowers within the array was 9 m (e.g. flowers 1 and 4). Distance between a flower
and the nearest laptop was 5.20 m. Each laptop was protected by a golf umbrella, with a unique two-colour pattern, to provide additional three-dimensional
landmarks for the bees. The black cross indicates the position of the experimenter. The black arrow (bottom left) indicates north. Photos of the flight cage, the
artificial flowers and the visual landmarks are shown in Fig 1.

doi:10.1371/journal.pone.0150844.g002
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Therefore, it is likely that bees visiting a flower could only detect nearest neighbour flowers in
our experimental array.

We used five laptop computers to record the video data. Each laptop ran two webcams and
was placed at the centre between three nearest neighbour flowers (distance between the laptop
and each of the three flowers = 5.20 m; Fig 2a). Laptops were protected from sun and rain by golf
umbrellas (height = 1.5 cm, diameter = 1.0 m). Each umbrella was uniquely identified by a differ-
ent two-colour pattern and could be used by the bees as a three-dimensional landmark (Fig 1c).

Experimental procedure
All test bees were nestmates from the same colony. While this might not fully reflect the com-
petitive situations between foragers in the field, there is no evidence that bumble bees recognise
nestmates when visiting flowers [23,25]. If we take a colony perspective, when floral nectar is
limited, the colony should benefit from all foragers spreading themselves out among flowers,
avoiding overlap of foraging areas in just the same way as individuals from different colonies,
or indeed members of different species [35,36].

We tested seven pairs of middle-aged foragers (10–15 days post eclosion) to ensure that
their age and prior foraging experience was comparable [16]. Bees were pre-trained and tested
from 10:00–18:00 on two consecutive days. On day one, we allowed all bees to forage freely on
a pre-training flower placed 1 m in front of the nest entrance (Fig 2b) and recorded the identity
of regular foragers (bees that were observed visiting the flower and shuttling back and forth
between the colony nest box and the flower at least five times within two hours [15]). The pre-
training flower was the same shape and colour as test flowers but its feeding cup was filled with
a cotton wick dipped into a nectar reservoir from which bees could feed ad libitum. During this
phase, we covered all test flowers, laptops and umbrellas with black cloth bags so that bees
remained naïve to the test situation.

On day two, we tested two randomly selected foragers from the pool of pre-trained bees
(from day one) with all test flowers, laptops and umbrellas uncovered. We started the nectar
pumps six minutes before the observations to provide 20 μL of nectar in the feeding cup of
each flower at the beginning of data collection. A bee visiting the 10 flowers during its first for-
aging bout could thus gather a minimum of 200 μL of nectar, which is the crop capacity of a
large forager [33]. We conducted observations during two consecutive experimental phases,
each lasting approximately three hours (mean duration of phase one (± s.e.): 2.5 ± 0.1 h, phase
two: 2.9 ± 0.2 h; n = 7 pairs). In the first phase (one-forager phase), we allowed one bee (the res-
ident) to forage for 25 consecutive bouts. A foraging bout started when the forager left the nest
and ended upon its return to the colony. In the second phase (two-forager phase), we intro-
duced the second bee (the newcomer) and allowed it to forage alongside the resident. At the
start of the two-forager phase the resident bee had 25 bouts experience, while the newcomer
had no experience of the flower array. We stopped all observations when the newcomer had
completed 25 foraging bouts. Flower visits were automatically recorded using video motion
detection and all departures and arrivals at the nest entrance were controlled and timed by the
experimenter. Nectar pumps were turned off by the experimenter for flowers that had not been
visited by bees for a period exceeding 12 min, in order to cap the maximum standing crop
available at flowers to 40 μL. Nectar pumps were restarted immediately after a bee visit. The
two experimental phases were conducted in direct succession without interruption so that any
sudden change in the foraging pattern of the resident bee between phases would likely be
attributable to the release of the newcomer (mean (± s.e.) interval between the last bout of the
one-forager phase and the first bout of the two-forager phase: 107.4 ± 14.7 s, n = 7 bouts; mean
interval between two consecutive bouts of the same phase: 113.3 ± 7 s, n = 350 bouts).

Flower Visitation Networks in Pairs of Bumble Bees

PLOS ONE | DOI:10.1371/journal.pone.0150844 March 16, 2016 6 / 21



Throughout the observations, the experimenter remained seated next to the colony to control
all arrivals and departures of the two tested bees using the shuttered entrance tube of the colony
nest box (Fig 2b). At the end of the two-forager phase we cleaned all flowers with a 70% (w/w)
ethanol solution. We weighed both foragers and measured their thorax width. Bees from each
pair had statistically indistinguishable body mass (mean dry body mass (± s.e.), resident:
133 ± 9 mg, newcomer: 131 ± 6 mg, n = 7 pairs; Wilcoxon signed rank test for paired data:
V = 16, P = 0.813) and body size (mean thorax width (± s.e.), resident: 8.23 ± 0.05 mm, new-
comer: 7.98 ± 0.21 mm, n = 7 pairs; Wilcoxon signed rank test for paired data: V = 31,
P = 0.456). All observations were conducted within three weeks on sunny days with a clear
blue sky to minimise weather effects as much as possible.

Data analysis
Movement patterns. We recorded 5259 video clips of bees visiting flowers (1763 clips in

the one-forager phase, 3496 clips in the two-forager phase). In each clip, we identified the bees’
tag numbers, their time of arrival and departure from the flower, noted whether they fed, and
any interactions between foragers. For each bee, we compiled a complete flower visitation
sequence from which we constructed a transition matrix containing the cumulative frequency
of movements between the nest and each flower, and among all flower pairs, for each experi-
mental phase (for complete list of flower visitation sequences see S1 Table).

From these transition matrices we mapped the movement patterns of individual bees in the
form of a weighted, directed visitation network [37], in which the nest and the flowers are
nodes and the transitions between nodes are edges (Fig 3). Node diameter and edge thickness
arrows are proportional to their relative usage frequency. Directional transitions made more
frequently than expected by chance (binomial test with probability 0.5 to move in either direc-
tion, P< 0.05) are represented with a single-headed arrow. Transitions with no significant
directional bias are indicated by two-headed arrows.

From the flower visitation sequences we calculated the number of different flowers visited
and the number of revisits to the same flower for each foraging bout. We estimated the mini-
mum overall travel distance (by adding all linear distances between consecutive flower visits,
starting and ending at the nest) and the travel speed (overall distance travelled divided by travel
duration) for every foraging bout. We quantified similarity between pairs of flower visitation
sequences using a similarity index derived from DNA sequence alignment [33,37]. This index
takes into account the length of visitation sequences, the identity of flowers visited and visit
order. It ranges between 0 (completely different sequences, e.g. 123 vs 456) and 1 (identical
sequences, e.g. 12345 vs 12345).

Foraging success. For each bee, we calculated the bout duration (time between departure
from and arrival at the nest), the total time spent visiting flowers, and the total time spent trav-
elling among flowers for each foraging bout. We estimated the volume of nectar collected dur-
ing each flower visit, assuming that: (1) nectar accumulated at a constant rate (3.3 μL/min)
until the maximum standing crop (40 μL) was reached, (2) all the nectar accumulated prior to
and during a visit was removed by a bee, and (3) half of the nectar was taken by each bee if the
pair fed simultaneously on the same flower (video data do not allow any more precise estima-
tion of volumes collected). Using the total volume of nectar collected (by summing the nectar
volume collected for all flower visits) per foraging bout we calculated the net energy intake rate
(E), an established metric to estimate bumble bee foraging success [38–41], using the equation:

E ¼ epSV �MðcpTp þ cf Tf

Tpþ Tf
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Fig 3. Flower visitation networks.Maps showing the cumulative movement patterns of (a) resident bees during the one-forager phase, (b) resident bees
during the two-forager phase, and (c) newcomer bees during the two-forager phase. Visitation networks of bees from the same pair are presented in vertical
columns. For each panel, we have represented the nest box (black square), the flowers that were visited at least once (circles), and the flowers that were
never visited (grey crosses), by the focal bee. The diameter of each circle is proportional to the cumulative frequency of visits to that flower relative to the total
number of visits to all flowers. The four flowers visited most frequently by the focal bee are shown in red. Arrows indicate the frequency and direction in which
the bee moved between pairs of locations. Arrow thickness is proportional to the cumulative frequency of transitions between locations relative to the total
number of transitions observed. Single-headed arrows indicate the bee was significantly more likely to move in one direction during that transition (binomial
test with probability 0.5 to move in either direction, P < 0.05). Two-headed arrows indicate symmetrical transition direction. Labels (Bee 1–14, Pair 1–7) refer
to the same individuals throughout the study.

doi:10.1371/journal.pone.0150844.g003
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where e is the energy contained in 1 mg of sucrose (15.48 J), p is nectar density (1.177 mg/μL at
20°C), S is nectar concentration (40% v/v), V is the volume of nectar collected (μL),M is for-
ager mass (g), cp is the energetic cost of probing (0.034 J/g; [42]), Tp is the probe duration (time
spent visiting flowers), cf is the energetic cost of flight (0.436 J/g [42]) and Tf is the flight dura-
tion (time spent travelling among flowers).

Interactions on flowers. Pairs of bees were observed on the same flower in 189 of the
5259 (3.6%) video clips. We identified five types of behavioural events involving the two forag-
ers in these clips: following (one bee landed on a flower less than 5 s after the other bee
departed; S2 Video); joining (one bee landed on an already occupied flower; S1 and S3 Videos);
feeding simultaneously (two bees collected nectar simultaneously on the same flower; S1
Video); pushing (one bee pushed the other bee with its head or legs; S3 Video); and eviction
(one bee moved away, or fell off, the landing platform immediately after being pushed; S3
Video). Joining, feeding simultaneously, pushing and eviction were independent events that
could occasionally, but not always, be observed in a sequence within the same video clip (see
for examples in S1 and S3 Videos). Behaviours of the same type separated by at least 3 s were
treated as different events [43]. Bees were never observed to bite or sting each other.

Statistical analyses. All data were analysed in R 3.1.2 [44]. We used Fisher’s exact tests to
assess whether bees visited individual flowers at similar rates. We conducted Mantel tests and
Pearson’s correlation coefficient (function mantel.rtest() in R package ‘ade4’ [45]) for pairwise
comparisons of transition matrices for the same bees during the two experiment phases (one-
and two-forager), and for different bees during the same experimental phase. We used General-
ized Linear Mixed Models (GLMMs; function glmmPQL() in R package ‘MASS’ [46]) to ana-
lyse data on foraging success and interactions on flowers, while accounting for repeated
measures. We used GLMMs with Gaussian errors for analyses of nectar volumes collected, for-
aging bout durations, travel speeds, net energy intake rates and Mantel correlation coefficients
(r). We used GLMMs with Poisson errors for analyses of frequencies of flower visits and inter-
actions on flowers. Behavioural comparisons of the same individual across multiple foraging
bouts (either within or between experimental phases) included bee identity as a random factor.
Comparisons between bees within the same pair, or between bees from different pairs, included
pair identity as a random factor. We used Wilcoxon signed rank tests for paired samples to
compare both similarity indices for the same bee at different stages of the experiment and visit
frequencies to preferred flowers between bees within the same pair. All means are given with
standard errors (mean ± s.e.).

Results

One-forager phase
Movement patterns. Each of the seven bees tested discovered the flowers sequentially in a

different order (S1 Table). After 25 foraging bouts, bees had discovered an average of
9.14 ± 0.55 flowers (n = 7 bees): four bees found all ten flowers, two bees found nine flowers
and one bee found six (Fig 3a). Overall flower visitation frequencies were significantly different
among bees (Fisher’s exact test: P< 0.001), indicating that each forager explored and used the
experimental array in a different manner. On average, bees made 60.4 ± 2.7% (n = 7 bees) of all
their visits to only four flowers and these subsets were unique to each forager (see red circles in
Fig 3a). This suggests that there was no flower, or subset of flowers, that was inherently more
attractive to all bees than others. As bees gained experience with the spatial configuration of
flowers, their visitation sequences from successive bouts increased in similarity, from an aver-
age similarity index of 0.25 ± 0.04 in the first 5 bouts to 0.36 ± 0.06 in the last 5 bouts (n = 7
bees; Wilcoxon test: V = 0, P = 0.016). Therefore, in the absence of other foragers, resident bees
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developed a foraging area in which they restricted their foraging activity to a subset of flowers
that they visited in an increasingly repeatable order.

Foraging success. Each bee collected a consistent volume of nectar per foraging bout
throughout the 25 bouts (first 5 bouts: 169.3 ± 30.7 μL, last 5 bouts: 176 ± 29.6 μL, n = 7 bees;
GLMM—effect of number of bouts completed: t6 = 0.18, P = 0.860). This suggests that bees
filled their crop to capacity in all foraging bouts. However, their foraging success improved dra-
matically with training. As bees gained experience, they performed significantly shorter forag-
ing bouts (first 5 bouts: 475.7 ± 107.6 s, last 5 bouts: 217.8 ± 17.9 s, n = 7 bees; GLMM—effect
of number of bouts completed: t6 = -2.53, P = 0.045), visited a greater number of flowers per
bout (first 5 bouts: 3.51 ± 0.18, last 5 bouts: 4.63 ± 0.46, n = 7 bees, GLMM—effect of number
of bouts completed: t6 = -2.93, P = 0.026; Fig 4a), made fewer revisits to the same flowers per
bout (first 5 bouts: 2.8 ± 0.57, last 5 bouts: 1.2 ± 0.51, n = 7 bees, GLMM—effect of number of
bouts completed: t6 = -2.90, P = 0.027; Fig 4b) and increased their travel speed per bout (first 5
bouts: 0.45 ± 0.73 m/s, last 5 bouts: 0.73 ± 0.07 m/s, n = 7 bees, GLMM—effect of number of
bouts completed: t6 = 3.1, P = 0.021; Fig 4c). Ultimately, bees improved their net energy intake
rate by 128 ± 54% (first 5 bouts: 2.91 ± 0.23 J/s, last 5 bouts: 6.18 ± 0.99 J/s, n = 7 bees; GLMM
—effect of number of bouts completed: t6 = 3.43, P = 0.014; Fig 4d). All these improvements in
measures of foraging performance had levelled off by the end of the 25 bouts (Fig 4).

Two-forager phase
Movement patterns. Immediately after the resident bee completed 25 foraging bouts, we

released a second forager (newcomer) into the flight cage and recorded all flower visits made
by both bees until the newcomer had also completed 25 bouts (S1 Table). For each resident,
networks of flower visits during the one-forager and two-forager phases were significantly cor-
related (Fig 3b; Mantel test; bee 1: r = 0.79, P< 0.001; bee 2: r = 0.39, P = 0.001; bee 3: r = 0.47,
P = 0.002; bee 4: r = 0.65, P< 0.001; bee 5: r = 0.57, P< 0.001; bee 6: r = 0.59, P< 0.001; bee 7:
r = 0.29, P = 0.032).

Despite this general similarity in resident bee movement patterns during the two phases of
the experiment, some remarkable changes were also observed. Firstly, resident bees made
83.4 ± 1.8% (n = 7 bees) more flower visits per foraging bout during the two-forager phase
compared to the one-forager phase (mean number of visits per bout during the one-forager
phase: 6.14 ± 0.98, two-forager phase: 10.66 ± 1.72, n = 7 bees; GLMM—effect of experiment
phase: t6 = 3.48, P = 0.013). Secondly, each resident continued to make most of its visits to a
subset of four flowers (57.1 ± 1.8% of all visits, n = 7 bees), but on average 1.43 ± 0.3 of those
flowers were different from those visited most frequently by the same bee during the one-for-
ager phase (see red circles in Fig 3a and 3b). Thus, although each individual retained the core
structure of its foraging area during the two-forager phase, the arrival of a newcomer affected
the size and geometry of its foraging area.

On average, newcomers discovered 8.57 ± 0.48 flowers (n = 7 bees) during the two-forager
phase, creating appreciable potential for interference with movement patterns of the resident
bees. Three bees found all 10 flowers, one bee found nine flowers, one bee found eight flowers
and two bees found seven (Fig 3c). Newcomers and residents from the same pair never used
exactly the same visitation sequence (S1 Table), but their overall flower visitation networks
were significantly correlated for six of the seven bee pairs (Mantel test; pair 1: r = 0.74,
P< 0.001; pair 2: r = 0.89, P = 0.001; pair 3: r = 0.32, P = 0.042; pair 4: r = 0.52, P< 0.001; pair
5: r = 0.19, P = 0.114; pair 6: r = 0.77, P< 0.001; pair 7: r = 0.78, P = 0.032). The newcomer
from pair 5 (bee 12) exhibited remarkably little exploratory behaviour: it made the fewest
flower visits (n = 61 visits) and the highest proportion of visits to the same flower (34.4% of
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visits to flower 4) of all 14 bees tested. Importantly, flower visitation networks of newcomers
were significantly more correlated to the visitation networks of residents from their own pair
than to the visitation networks of residents from any other pair (r same pair: 0.59 ± 0.10, n = 7
correlations, r different pair: 0.35 ± 0.03, n = 42 correlations; GLMM—effect of same or differ-
ent pair: t6 = 3.06, P = 0.022). Thus, the foraging choices of bees in each pair influenced each
other and these individuals developed movement patterns that were significantly more similar
than expected by chance. Like residents, newcomers also made most of their visits to a subset
of only four flowers (64.8 ± 4.3% of all visits, n = 7 bees), and this subset was unique to each
individual (see red circles in Fig 3c). The overall frequency of visits to the subset of four flowers

Fig 4. Foraging success. Average data (mean ± s.e.) for the seven resident (black dots) and the seven newcomer (white dots) bees during all consecutive
foraging bouts of the two experimental phases. (a) Mean number of different flowers visited per foraging bout; (b) number of revisits to the same flowers per
foraging bout; (c) travel speed per foraging bout; (d) net energy intake rate per foraging bout. Grey arrows show the moment when newcomers were
introduced in the array of flowers (bout 26). Additional foraging bouts by resident bees during the two-forager phase (> bout 50) are not shown.

doi:10.1371/journal.pone.0150844.g004
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during the two-forager phase was similar in residents and newcomers (Wilcoxon signed rank
test: V = 3, P = 0.078). On average, 1.86 ± 0.51 (n = 7 bees) of the four flowers most frequently
visited by a newcomer were the same flowers visited most frequently by the resident from the
same pair, thus confirming that bees exploited foraging areas with considerable spatial and
resource use overlap.

Foraging success. Resident bees completed a greater number of foraging bouts (residents:
28.7 ± 1.2 bouts, newcomers: 25 bouts; n = 7 bees; Wilcoxon signed rank test: V = 26.5,
P = 0.042) and collected more nectar (residents: 3.76 ± 0.28 mL, newcomers: 2.28 ± 0.36 mL;
n = 7 bees; Wilcoxon signed rank test: V = 28, P = 0.016) than newcomer bees during the two-
forager phase. However, comparing flower visitation sequences of residents immediately before
and after the beginning of the two-forager phase reveals a sharp drop in foraging success asso-
ciated with the release of the newcomer. Residents made longer foraging bouts (last 5 bouts of
one-forager phase: 206.3 ± 9.5 s, first 5 bouts of two-forager phase: 293.5 ± 28 s, n = 7 bees;
GLMM—effect of number of bouts completed: t6 = -3.14, P = 0.02), made more flower revisits
(last 5 bouts of one-forager phase: 1.2 ± 0.57, first 5 bouts of two-forager phase: 4.23 ± 1.37,
n = 7 bees; GLMM—effect of number of bouts completed: t6 = -2.73, P = 0.034; Fig 4b) and had
lower net energy intake rates per bout (last 5 bouts of one-forager phase: 6.18 ± 0.99 J/s, first 5
bouts of two-forager phase: 4.14 ± 0.37 J/s, n = 7 bees; GLMM—effect of number of bouts com-
pleted: t6 = 2.88, P = 0.028; Fig 4d) during the first 5 bouts of the two-forager phase than during
the last 5 bouts of the one-forager phase. These measures of the foraging success for residents
remained stable until the end of the two-forager phase (GLMM—effect of number of bouts
completed: P< 0.05 for all three variables, Fig 4). The foraging success of residents showed
markedly different dynamics during the one-forager phase (a gradual increase followed by a
stabilisation) compared to the two-forager phase (sharp drop followed by a stabilisation), thus
illustrating the influence of newcomers on resident behaviour.

In contrast, newcomer mean foraging success improved throughout the two-forager phase.
These bees, with no previous experience of the flower array gradually reduced the duration of
their foraging bouts (first 5 bouts: 432.3 ± 50.1 s, last 5 bouts: 249.2 ± 17.7; s, n = 7 bees; GLMM
—effect of number of bouts completed: t6 = -3.37, P = 0.015), while increasing the number of
different flowers they visited per bout (first 5 bouts: 3.11 ± 0.41, last 5 bouts: 5.37 ± 0.85 n = 7
bees; GLMM—effect of number of bouts completed: t6 = 3.93, P = 0.007; Fig 4a) and their travel
speed per bout (first 5 bouts: 0.4 ± 0.05 m/s, last 5 bouts: 0.87 ± 0.07 m/s, n = 7 bees; GLMM—

effect of number of bouts completed: t6 = 6, P = 0.001; Fig 4c). Ultimately, newcomers reached
similar levels of route repeatability (mean similarity index for residents: 0.35 ± 0.03, newcomers:
0.44 ± 0.07; Wilcoxon signed rank test: V = 7, P = 0.297) and net energy intake rates (residents:
3.35 ± 0.18 J/s, newcomers: 2.84 ± 0.11 J/s; GLMM—effect of bee status: t6 = -1.93, P = 0.101;
Fig 4d) as residents during the last 5 bouts of the two-forager phase. Therefore the resident
competitive advantage, attributable to experience accumulated during the one-forager phase,
progressively disappeared as newcomers became increasingly familiar with the spatial arrange-
ment of flowers.

Comparing the overall foraging efficiency of newcomers during the two-forager phase to
that of residents during the one-forager phase indicates that the gradual improvement of forag-
ing performances in newcomers was limited, to some extent, by the presence of residents. New-
comers made foraging bouts of similar duration (newcomers: 294.8 ± 23.4 s, residents:
280.4 ± 22.2 s, n = 7 bees; GLMM—effect of bee status: t6 = 0.55, P = 0.6), had similar travel
speeds (newcomers: 0.72 ± 0.07 m/s, residents: 0.72 ± 0.06 m/s, n = 7 pairs; GLMM—effect of
bee status: t6 = 0.07, P = 0.948), visited similar numbers of flowers per bout (newcomers:
4.81 ± 0.66, residents: 4.05 ± 0.31, n = 7 pairs; GLMM—effect of bee status: t6 = 0.78, P = 0.468)
and made similar numbers of flower revisits per bout (newcomers: 3.8 ± 1.31, residents:
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2.09 ± 0.76, n = 7 pairs; GLMM—effect of bee status: t6 = -1.2, P = 0.274) compared to residents
during the one forager-phase. However, energy intake rates of newcomers remained signifi-
cantly lower than those of residents during all foraging bouts of the two-forager phase (new-
comers: 2.45 ± 0.23 J/s, residents: 5.52 ± 0.43 J/s, n = 7 pairs; GLMM—effect of bee status: t6 =
-6.71, P< 0.001), highlighting the negative impact of competitive interactions on the ability of
newcomers to efficiently establish and exploit their own foraging area.

Interactions on flowers. Video recording of all flower visits provided us with critical
information on the frequency and outcomes of interactions between foragers. Bees followed
each other on flowers (one bee landed on a flower after the other departed; S2 Video) in 1.8%
of all visits (63 of the 3496 clips in the two-forager phase). Bees joined each other on flowers
(one bee landed on an already occupied flower; S1 and S3 Videos) in a further 3.6% of all visits
(126 of 3496 clips). These direct encounters on flowers occurred in all pairs and their frequency
tripled over time, from an average of 2.00 ± 0.87 encounters during the first 5 bouts of the two-
forager phase to 7.14 ± 2.71 during the last 5 bouts (GLMM—effect of number of bouts com-
pleted by the newcomer: t6 = 2.58, P = 0.042). Nonetheless, the relative rarity of these events
indicates that bees did not deliberately move behind one another most of the time. While resi-
dents and newcomers both followed (GLMM—effect of bee status: t6 = -0.58, P = 0.583; Fig 5a)
and joined (GLMM—effect of bee status: t6 = -0.72, P = 0.6; Fig 5b) each other on flowers at
similar rates overall, newcomers were never observed to follow or join residents on their first
visit to each of the 10 flowers. This initial absence of choice copying by newcomers at previ-
ously unvisited flower locations suggests that these bees gained sufficient experience with the
phenotype of our artificial flowers (colour, shape, texture) during the pre-training phase to
consider it familiar.

The two bees fed simultaneously on the same flower in only 6.3% of all visits with an
encounter (8 of 126 clips; S1 Video). The other 93.7% of visits with an encounter (118 of 126
clips) were characterized by physical interactions during which bees pushed each other on the
landing platform. In 28.8% of these interactions (34 of 118 clips), both foragers left the flower
simultaneously without feeding. In the other 71.2% (84 of 118 clips), one bee evicted the other
from the feeding platform. Bees initiated pushing at similar rates irrespective of whether the
encounter occurred on one of their four most visited flowers or not (GLMM—effect of flower
type (one of the four most favoured flowers or not): t11 = 0.98, P = 0.349; effect of bee status: t5
= 1.2, P = 0.285; interaction: t11 = -1.69, P = 0.118). However, resident foragers initiated
64.4 ± 7.0% of all pushing events (GLMM—effect of bee status: t6 = -2.45, P = 0.049; Fig 5c)
and provoked 68.9 ± 6.9% of all evictions (GLMM—effect of bee status: t6 = -2.73, P = 0.034;
Fig 5d), thus dominating overall interactions on flowers. Presumably, residents had greater
motivation to escalate aggressive interactions than newcomers due to their prior experience
and greater knowledge of the flower reward values.

Although relatively infrequent, these interactions on flowers were correlated with subse-
quent changes in bee foraging decisions. Both residents and newcomers showed significantly
increased visit frequencies to the flower(s) on which they had encountered each other during
the preceding bout (GLMM—effect of encounter frequency at a flower during previous bout:
t68 = 3.55, P< 0.001; effect of bee status: t6 = -2.08, P = 0.083, interaction: t68 = 0.05, P = 0.962).
However, they exhibited distinct responses depending on the outcome of previous encounters
(Fig 6). Resident foragers prioritized visits to flowers from which they had been evicted, possi-
bly to monopolize familiar nectar sources in their foraging area. In contrast, newcomers made
a greater number of visits to flowers from which they had evicted residents. By prioritizing vis-
its to flowers on which they displaced the resident, and thus obtained a food reward, newcom-
ers could be attempting to establish their own foraging area. Ultimately, both residents and
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Fig 5. Interactions on flowers. Cumulative data (mean ± s.e.) for the seven resident (black bars) and the seven newcomer (white bars) bees showing: (a)
total number of following events (one bee landed on a flower less than 5 s after the other bee departed) (b) total number of joining events (one bee landed on
an already occupied flower); (c) total number of pushing events (one bee pushed the other bee with its head or legs); (d) total number of evictions (one bee
moved away, or fell off, the landing platform immediately after being pushed). For each pairwise comparison, the results of a GLMM are shown (Poisson
GLMM, random effect: pair identity, fixed effect: bee status (resident or newcomer) on variable of interest). Asterisks represent significant differences
(P < 0.05).

doi:10.1371/journal.pone.0150844.g005
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newcomers increased their visits to the same individual flowers, thus increasing the chances of
encounters with each other and spatial overlap between their respective foraging areas.

Discussion
Bumble bees foraging simultaneously in a common environment adopted different strategies
depending on their experience of the flower array. Residents, that had started to establish a for-
aging area several hours before the arrival of newcomers, continued to exploit familiar feeding
sites by increasing their frequency of floral visits and evicting newcomers when they encoun-
tered them on flowers. In contrast, newcomers prioritized revisits to flowers from which they
had successfully evicted residents and obtained a nectar reward, presumably to establish their
own foraging area. Our results highlight significant spatial overlap between bee foraging areas,
which may have emerged from this combination of exploitation and interference.

In the absence of other foragers, bumble bees given exclusive access to multiple replenishing
feeding sites tend to exploit a subset of these resources within larger foraging areas based on
their spatial memories [10]. Over consecutive bouts, bees develop routes (traplines) enabling
them to adjust their timing of revisits to feeding sites to enable nectar replenishment [14], pri-
oritize visits to most rewarding sites [15] and minimize overall distances travelled between
them [16,31]. Consistent with findings from a previous study on a different bumble bee species
(Bombus impatiens) [24], we found that foraging experience confers a competitive advantage
to bees; enabling experienced residents to visit more feeding sites, travel faster between them,
and achieve greater foraging success than less well informed newcomers. Our analyses of indi-
vidual movement patterns show how this home advantage diminishes with time, due to a
sharp drop of the foraging success of residents, that suddenly lose their exclusive access to

Fig 6. Consequences of direct encounters on subsequent flower visits. Average (mean ± s.e.) number of visits to a flower during a foraging bout in
relation to the outcome of encounters on that flower in the previous bout for the seven resident and the seven newcomer bees: either the focal bee evicted the
other forager or the focal bee was evicted by the other forager. Data shown are for resident (black bars) and newcomer (white bars) bees. Upper case letters
represent significant differences (P < 0.05; Poisson GLMM, random effects: flower and pair identities, fixed effect: outcome of eviction from a flower in the
previous bout on the number of visits to that same flower in the current bout).

doi:10.1371/journal.pone.0150844.g006
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resources, and a gradual increase of newcomer success, as they discover flowers and start to
include them in their developing foraging areas.

Several lines of evidence indicate that the behavioural changes of residents are a direct con-
sequence of the introduction of newcomers. Firstly, immediately following the start of the two-
forager phase (bouts 26–30), resident bees made 42% longer foraging bouts, 253% more revisits
to empty flowers per bout, resulting in 33% lower energy intake rates than when they foraged
alone. The sharp drop in resident foraging performance at the start of the two-forager phase,
followed by a stabilisation of foraging success shows markedly different dynamics to the typical
gradual increase and stabilisation of foraging success observed in bees foraging alone in stable
arrays of flowers (as described in the one-forager phase and in numerous other studies using
similar experimental approaches [7,14–16,24,25,32,33]). Secondly, the sudden changes in resi-
dent foraging behaviour were accompanied by a significant shift in both the size and geometry
of their foraging area. Bees with exclusive access to a stable array of flowers establish durable
traplines to exploit selected feeding sites as long as these sites continue to provide enough
resources [7,14,16]. When the array is perturbed, for instance because some flowers are experi-
mentally moved [32,33], their relative rewards are changed [15], or competitors are added or
removed [22–25], bees search for new feeding sites and modify the their established foraging
areas. Therefore, sudden alterations of resident behaviour between the two experimental phases
observed in our study cannot be explained by them simply accumulating more foraging experi-
ence, but are instead the result of the presence of newcomers.

Interestingly, the foraging areas of residents and newcomers showed significant levels of
spatial overlap notwithstanding that there were enough resources available for foragers to
exploit different subsets of flowers. Spatial overlaps are not the consequence of randommove-
ments since flower visitation patterns were more similar between foragers within a pair than
those of different pairs. The fact that resident bees continuously revisited the same flowers/
areas throughout the two experimental phases also indicates that environmental heterogene-
ities within the flight cage (e.g. light, temperature, humidity, wind), which may have greatly
fluctuated between the start (morning) and the end (evening) of the observations, had no
apparent influence on space use by bees. Furthermore, we found no indication that any flower
positions were more attractive than others as all pairs of bees tested focused their foraging
areas around different subsets of flowers. Spatial overlaps are also unlikely to have emerged
from a tendency for bees to follow one other, as foragers followed and joined each other on the
same flowers in less than 6% of all recorded visits. Instead, our data show that bees engaged in
competitive interactions over access to flowers.

Video recording of all flower visits revealed that more than 90% of encounters on flowers
involved physical interactions, during which bees pushed each other, resulting in the eviction
of one contestant. In contrast to the overt aggressive events observed among bumble bee work-
ers competing over reproduction in colonies that have passed the ‘competition point’ [43],
interactions on flowers did not result in visible injuries or death, suggesting that bees attempted
to monopolize nectar rewards rather than directly impair the long-term performance of a
potential rival forager. Aggressive interactions on flowers have been previously reported
between different bee species competing for limited nectar or pollen resources, for instance in
bumble bees [17] and stingless bees [20]. However, we are not aware of previous reports about
such interactions between conspecifics. Nieh [47] described aggressive interactions between
honeybees (Apis mellifera) on abundant food resources that could accommodate up to 40 bees,
an experimental context that was probably closer to hive robbing (when stronger colonies
attack weaker hives to steal their honey stockpiles) than flower foraging. This explanation is
unlikely for our experiments as they involved low forager densities and multiple flowers each
providing small amounts of nectar when compared to ad libitum feeding conditions [47].
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Although relatively rare (less than 4% of all flower visits), these encounters on flowers may
have had critical consequences for bees’ subsequent foraging decisions, depending on their
individual experience. Resident foragers initiated and won most interactions, indicating that
they engaged in active defence of their foraging area. Such ‘prior-residence effect’ (sensu [48])
on contest outcomes suggests that resident bees had a stronger motivation to contest and esca-
late competition due to the greater value they placed on these resources that are part of their
foraging area, compared to less experienced newcomers [49]. In the rare cases when newcom-
ers won interactions on flowers, residents increased their visitation rates to contested flowers in
the subsequent foraging bout, potentially an attempt to discourage newcomers from revisiting
flowers in future bouts by keeping nectar rewards low [12]. In contrast, newcomers increased
their visitation rates to flowers from which they recently evicted residents. Presumably, the nec-
tar rewards obtained after a successful eviction of residents reinforced newcomer motivation to
exploit particular flowers and make it more likely they are included in their developing foraging
area or trapline through simple associative learning [50].

Although our study involved interactions between nestmates, we are not aware of any evi-
dence that bumble bees respond differently to nestmates compared to other conspecifics in a
foraging context. Several recent studies indicate that bees equally use social information when
deciding to either join or avoid conspecifics on flowers [26,27,28,29], be they closely related
nestmates or foragers from different colonies, thus suggesting that similar results would be
observed with foragers from different colonies. Moreover, if bees could recognise non-nest-
mates, we would expect competitive interactions to be even more pronounced in a situation
involving multiple colonies. Nonetheless it would be useful to conduct similar experiments
with pairs of workers from different colonies to explore whether the levels of interference com-
petition and aggression depend on relatedness between foragers.

It is likely that these competitive interactions on flowers were favoured (at least initially) by
cues inadvertently provided by both competitors. Although we found no indication that bees
visually followed one another to choose the same flowers, they had access to olfactory footprint
cues that accumulated on visited flowers throughout the experiment [26]. Bees learn to associ-
ate these scent marks with reward levels experienced on flowers and develop different
responses depending on context, so that the same mark can become attractant, neutral or repel-
lent to a forager based on its past foraging success [51]. Since all foragers tested in our study
were pre-trained in groups on a single flower delivering ad libitum nectar rewards before being
tested, it is likely that they each associated the presence of scent marks (due to repeated visits
by multiple bees from the colony) with flowers containing high rewards in areas relatively safe
from predators. During the two-forager phase, newcomers may thus have initially been
attracted to flowers already exploited and scent marked by residents, increasing the probability
of encounters on flowers. However, after a few foraging bouts each bee may have adjusted its
interpretation of scent marks based on individual experience of rewards from flowers.

Overall our results suggest that the development of bumble bee foraging areas occurs
through a combination of resource depletion and interference. These mechanisms have been
proposed to explain resource partitioning among territorial animals competing for divisible
spaces, such as large habitat patches [52,53]. Future studies on pollinator space use might be
expanded to explore this hypothesis in experimental scenarios involving more foragers and
from more colonies in various arrangements of flowers. Specifically, the frequency of the com-
petitive interactions between foragers in the field, where nectar secretion rates of individual
flowers are typically lower ([54–56] but see [57]) and the number of available flowers per bee
may be larger than in our experimental conditions, remain to be confirmed. Potential beha-
vioural differences among foragers from different colonies will also have to be examined
[58,59]. How, or indeed whether, foraging interactions and their consequences on space use
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observed in pairs of bees might scale up to the level of colonies, populations and communities,
and how they could shape patterns of pollination are exciting questions deserving future
attention.

Supporting Information
S1 Table. Complete list of flower visitation sequences compiled from video clips recorded
at each flower. For each bee, the visitation sequence from each consecutive foraging bout is
presented in chronological order down a column. Numbers (1–10) refer to flower locations
(Fig 2b), labels (Bee 1–14, Pair 1–7) refer to the same individuals throughout the study, and an
empty cell indicates that a bee was not allowed to forage during that bout.
(DOCX)

S1 Video. Joining event followed by simultaneously feeding. A bee (bee 10, tag: white 99)
lands on a flower already occupied by another bee (bee 3, tag: white 88). The two bees extract
nectar simultaneously (for ca. 9 s) and leave the flower when the cup is emptied. Labels (bee 3
and 10) refer to the same individuals throughout the study.
(M4V)

S2 Video. Following event. A bee (bee 1, tag: white 32) lands on a flower 2 s after a previous
bee (bee 8, tag: white 24) has left. Bee 8 probes the empty feeding cup and leaves. Labels (bee 1
and 8) refer to the same individuals throughout the study.
(M4V)

S3 Video. Joining event followed by a pushing event and an eviction. A bee (bee 6, tag: white
32) lands on a flower already occupied by another bee (bee 13, tag: white 24). Bee 6 pushes bee
13 in the back and evicts it from the landing platform. Bee 6 probes the empty feeding cup,
then leaves. Labels (bee 6 and 13) refer to the same individuals throughout the study.
(M4V)
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