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1  | INTRODUC TION

Over the past recent years, the study of animal movements has 
experienced a rapid growth thanks to the development of new 
technologies to automatically collect long-term individual data 

on wild animals (Flack, Nagy, Fiedler, Couzin, & Wikelski, 2018; 
Strandburg-Peshkin, Farine, Couzin, & Crofoot, 2015; Tomkiewicz, 
Fuller, Kie, & Bates, 2010). The acquisition of high resolution 
data has also required the development of new statistical tools 
to describe and analyse movements. At the most basic level, it is 
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Abstract
1. Understanding how animal movements change across space and time is a 

fundamental question in ecology. While classical analyses of trajectories give 
insightful descriptors of spatial patterns, a satisfying method for assessing the 
temporal succession of such patterns is lacking.

2. Network analyses are increasingly used to capture properties of complex animal 
trajectories in simple graphical metrics. Here, building on this approach, we intro-
duce a method that incorporates time into movement network analyses based on 
temporal sequences of network motifs.

3. We illustrate our method using four example trajectories (bumblebee, black kite, 
roe deer, wolf) collected with different technologies (harmonic radar, platform 
terminal transmitter, global positioning system). First, we transformed each tra-
jectory into a spatial network by defining the animal's coordinates as nodes and 
movements in between as edges. Second, we extracted temporal sequences of 
network motifs from each movement network and compared the resulting be-
havioural profiles to topological features of the original trajectory. Finally, we 
compared each sequence of motifs with simulated Brownian and Lévy random 
motions to statistically determine differences between trajectories and classical 
movement models.

4. Our analysis of the temporal sequences of network motifs in individual movement 
networks revealed successions of spatial patterns corresponding to changes in be-
havioural modes that can be attributed to specific spatio-temporal events of each 
animal trajectory. Future applications of our method to multi-layered movement 
and social network analysis yield considerable promises for extending the study of 
complex movement patterns at the population level.
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possible to visualize the sequence of locations visited by the ani-
mal by joining those locations with a line, that is, the animal trajec-
tory. Speed, step length (distance between successive locations), 
residency (the time an individual remains at a specific location 
before moving) and turning angle (change of direction between 
successive steps) are some of the main parameters that can be 
extracted from such a trajectory (Dodge, Weibel, & Lautenschütz, 
2008; Patterson, Thomas, Wilcox, Ovaskainen, & Matthiopoulos, 
2008). These parameters tend to be correlated with specific be-
havioural states (Edelhoff, Signer, & Balkenhol, 2016) and can be 
grouped into patterns dependent of environmental constraints 
and spatial variability. So far, however, this approach has yielded 
little information about the temporal dimension of animal trajec-
tories (Jacoby & Freeman, 2016). For many animals, movements 
can show dramatic changes with time as a result of motivation, 
experience, social interactions or modifications of the environ-
ment (Swingland & Greenwood, 1983). Identifying these changes 
in complex movement datasets can thus bring critical insights into 
the fundamental ecology of animals.

Recent attempts to develop a unified spatio-temporal analytical 
framework of movement data have shown the existence of a rela-
tionship between temporal autocorrelations of movement param-
eters (i.e. step length) and spatial distribution of critical resources 
(Wittemyer, Polansky, Douglas-Hamilton, & Getz, 2008). Others 
have proposed to analyse the sequence of habitats encountered by 
an animal to extract behavioural changes in a trajectory (De Groeve 
et al., 2016; van Toor, Newman, Takekawa, Wegmann, & Safi, 2016). 
Behavioural change point analysis of movement parameters is a pow-
erful tool to estimate the time at which an animal changes its move-
ment patterns and how this corresponds to behavioural states such 
as resting, foraging or moving (Gurarie, Andrews, & Laidre, 2009; 
Teimouri, Indahl, Sickel, & Tveite, 2018). Multiple unsupervised 
statistical methods have also been used to reduce complex animal 
trajectories into human understandable format such as the circular 
standard deviation (Potts et al., 2018), the t-stochastic neighbouring 
embedding (t-SNE) algorithm (Bartumeus et al., 2016), the recur-
sive multi-frequency segmentation (Ahearn & Dodge, 2018), or the 
Fourier and wavelet analysis (Polansky, Wittemyer, Cross, Tambling, 
& Getz, 2010). Despite satisfying the quantitative aspects of spa-
tio-temporal analysis of animal movement data, these methods 
often require advanced mathematical knowledge and lack intuitive 
tools to help data visualization and interpretation by ecologists.

Network analysis may constitute a simpler, yet powerful, ap-
proach for such analyses (Bastille-Rousseau, Douglas-Hamilton, 
Blake, Northrup, & Wittemyer, 2018; Jacoby & Freeman, 2016; 
Pasquaretta, Jeanson, Andalo, Chittka, & Lihoreau, 2017; Pasquaretta 
et al., 2019). For example, Bastille-Rousseau et al. (2018) transposed 
global positioning system (GPS) locations obtained from three differ-
ent species (African elephants, giant Galapagos tortoises, Mule deer) 
into networks. In such networks, nodes represent spatial locations 
visited by the animals and edges animal movements between these 
locations. The analysis of node-level network metrics demonstrated 
that locations with high betweenness centrality scores (frequency 

at which a node acts as bridge along the shortest paths passing 
by two other nodes) was indicative of bridges between migration 
areas for tortoises and corridors between foraging sites for ele-
phants (Bastille-Rousseau et al., 2018). Network analysis of spatial 
data can thus bring important information for studying associations 
of complex behavioural patterns and spatial characteristics. So far, 
however, this method relies on a static representation of animal 
space use and does not consider the temporal nature of movements 
(Bastille-Rousseau et al., 2018; Jacoby & Freeman, 2016).

Here, we built on this approach to analyse temporal patterns in 
animal movement networks. Our method consists in transforming tra-
jectories into movement networks and analysing the temporal succes-
sion of motif patterns (i.e. three-node subgraphs, Wasserman & Faust, 
1994) in these networks. To illustrate the validity of the method, we an-
alysed example datasets of insects (bumblebee), birds (black kite) and 
mammals (roe deer, wolf) monitored with different technologies and at 
different spatio-temporal scales. We argue that this method, easily ac-
cessible to ecologists, can favour comparative analyses and bring new 
insights into the movement ecology of a wide range of species.

2  | MATERIAL S AND METHODS

2.1 | Movement datasets

We tested our method on animal trajectories obtained from two 
original datasets (bumblebee, black kite) provided in Dryad (https ://
doi.org/10.5061/dryad.47d7w m390), and two published datasets 
(roe deer, wolf) publicly available on the MoveBank data repository 
(Wikelski & Kays, 2020). The trajectories were selected to illustrate 
how the analysis of spatio-temporal behavioural patterns in move-
ment networks can apply to different types of raw data (harmonic 
radar, GPS), to animal species with different locomotion modes (flying, 
walking), at different spatial scales (region, across countries) and in 
different behavioural contexts (search, migration, roaming).

2.1.1 | Bumblebee search trajectory

We used a harmonic radar to obtain a search trajectory of a bum-
blebee worker on 15 April 2018 (1 recording every 3.3 s, 364 data 
points, Figure S1a). We set up a commercial colony of Bombus ter-
restris (Biobest NV) in a flat dry rice farm land in Sevilla (Spain; Figure 
S2). We trained multiple bumblebees to forage on three artificial 
flowers (i.e. blue platform with 40% (v/v) sucrose solution, see de-
tails in Lihoreau et al., 2012) positioned 2 m in front of the nest box. 
Once a regular forager was identified (bumblebee performing sev-
eral consecutive foraging bouts), we closed the colony entrance and 
randomly moved the three artificial flowers away in the field. The 
focal bumblebee was equipped with a transponder (16 mm vertical 
dipole) upon leaving the nest box and tracked with the harmonic 
radar until it returned to the colony (Riley et al., 1996). The radar 
was placed 350 m away from the colony nest box (Figure S3) and 
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returned the two-dimensional coordinates of the tagged bumblebee 
within a range of 700 m.

2.1.2 | Black kite long-range migration trajectory

We used GPS to track an adult female black kite Milvus migrans mov-
ing across Spain from 28 May 2019 to 19 August 2019 (1 recording 
every 6 hr, 332 data points, Figure S1b). The bird was caught after 
an injury and maintained 5 weeks in an aviary for rehabilitation. We 
equipped the bird with a platform terminal transmitter (PTT) back-
packed (Xerius Tracking) and released it in Toulouse (France), where 
it first moved within a limited area before migrating on its way to 
Morocco.

2.1.3 | Roe deer short-range migration trajectory

This dataset was obtained from the EURODEER collaborative pro-
ject (E. Mach Foundation; http://sites.google.com/site/eurod eerpr 
oject ; Cagnacci et al., 2011). It consists of one GPS trajectory of an 
adult male roe deer Capreolus capreolus collected from 23 October 
2005 to 28 October 2006 (1 recording every 4 hr, 1,827 data points; 
Figure S1c). The roe deer was tracked in the area of Trentino Alto 
Adige (Italy). Behavioural patterns in this trajectory are dominated 
by short range migratory movements representing the yearly leave-
and-back movements between two winter and summer sites. To 
compare this trajectory with the other example trajectories, we re-
duced the number of data points to 457 by resampling the trajectory 
every 16 hr.

2.1.4 | Wolf roaming trajectory

This dataset was obtained from a study of the Przewalskii horse re-
introduction project of the International Takhi Group (Kaczensky, 
Ganbaatar, Enksaikhaan, & Walzer, 2006). It consists of one GPS tra-
jectory of an adult male wolf Canis lupus collected from 05 March 
2004 to 18 September 2005 (1 recording every 8 hr, 1,455 data 
points in total). The wolf was tracked in the mountains of the Goby 
Desert (Mongolia). Behavioural patterns in this trajectory are domi-
nated by territorial movements around the mountains and one main 
roaming period (Figure S1d). To compare this trajectory with the 
other example trajectories, we reduced the number of data points to 
485 by resampling the trajectory each 24 hr.

2.2 | Method overview

We analysed all the trajectories following four major steps. First, 
we transformed the raw spatial coordinates into movement net-
works built using different spatial resolutions (grid sizes). Second, 
we extracted the temporal sequence of network motifs obtained 

from these different networks and compared them to define an 
optimal grid size for further analyses. Third, we used the selected 
temporal sequence of network motifs to highlight spatio-temporal 
locations showing complex behaviours in the original trajectory. 
Fourth, we extracted the non-random temporal transitions be-
tween consecutive motifs in the experimental datasets and com-
pared them with the non-random transitions of simulated data 
from classical movement models. The complete r code is available 
in Dryad (https ://doi.org/10.5061/dryad.47d7w m390) with de-
scription in Text S1.

2.2.1 | Transform spatial coordinates into a 
temporal movement network

The first step consisted in transforming the raw movement data into 
a format that can be automatically analysed with network metrics. 
To do so, we rasterized the animal coordinates on a spatial grid. 
Because different grid resolutions affect the topological structure 
of the resulting network (Bastille-Rousseau et al., 2018), we built a 
range of networks with different grid resolutions.

Building a movement network from an animal trajectory has 
the risk of oversimplifying the information depending on grid reso-
lution (Figure 1). Effects vary from large grid size, where the entire 
trajectory can be summarized into movement loops starting and 
ending at a single location, to small grid size, where each location 
of the raw trajectory corresponds to different grid cell. The op-
timal grid resolution capturing biologically relevant behavioural 
patterns is expected to lay somewhere in the middle. Previous 
studies have used the median of the step length distribution as 
grid size, based on the fact that this value leads to robust results 
under the assumption of Brownian movements (Bastille-Rousseau 
et al., 2018). However, many animal trajectories show more com-
plex patterns. To address this issue, for each trajectory we tested 
nine grid resolutions. Each grid resolution corresponded to one 
specific quantile of the step length distribution of the trajectory 
(i.e. p = .1, .2, .3, .4, .5, .6, .7, .8, .9). The animal coordinates were 
thus transformed into nodes and movements between them into 
directed edges (see Figure 1b). We attributed the same node iden-
tity to each coordinate falling into the same grid cell. Empty cells 
were considered as non-visited cells at this stage. We then trans-
formed the spatial network into a temporal edge list by associating 
a time to each movement of the sequence.

2.2.2 | Extract temporal sequence of network 
motifs from movement networks

Treating animal trajectories as behavioural sequences provides a 
description of topological movement structures and can reveal the 
processes by which these patterns appear and are maintained in 
the sequences (De Groeve et al., 2016). For each trajectory, we 
extracted temporal sequences of motif patterns between three 
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nodes from the edge list of each movement network. In the con-
text of movement networks, these sequences refer to subgraphs 
that describe spatio-temporal movements (Pasquaretta et al., 
2017) and can be used to understand non-random successions of 
patterns in a complex behavioural sequence (Patel, Keogh, Lin, & 
Lonardi, 2002).

Among the 13 possible different motifs between three nodes, 
five are irrelevant for movement data (Figure S4, see details in 
Wasserman & Faust, 1994). Four of the eight remaining motifs be-
long to the family of ‘loosely connected motifs’, that is, subgraphs 
missing one edge between two out of three nodes (Juszczyszyn, 
2014; Figure 2a). The four other motifs belong to the family of 
‘closely connected motifs’, that is, subgraphs with edges between 
all nodes. In the context of movement data, the loosely connected 
motif M3 indicates movements across locations without any revisit 
to any location. All other motifs indicate more complex movement 
patterns characterized by at least one revisit to a location.

Temporal sequences of network motifs can be extracted by di-
viding the edge list into specific motif windows including at least 
three different connected nodes (Paranjape, Benson, & Leskovec, 
2017). Here we built sliding windows containing a maximum of three 
nodes, allowing us to create a temporal sequence of successive mo-
tifs based on the utilization of three consecutive locations. To do 
so, we started from the first node of the network and iteratively 

analysed the entire sequence to create subsequences of three nodes. 
Each node in this subsequence can be visited only once (e.g. M3) or 
several times (e.g. M13). Once the first subsequence was created, we 
applied the same iterative algorithm to find all the successive motifs 
using the last node of the previous subgraph as starting point for the 
next one (Figure 2b).

2.2.3 | Adjustment of grid resolution

We applied the Dynamic Time Warping (DTW) algorithm (Sakoe & 
Chiba, 1978) to compare temporal sequences of motifs built with 
different grid resolutions and select the most suitable grid resolution 
given the data. The DTW compares two, or more, time series and 
returns the number of steps needed to transform one reference time 
series into another. Each step corresponds to the minimum number 
of changes needed to transform one query series into its reference 
series (see details in Giorgino, 2009).

We used this approach to create matrices of similarity between 
motif time series. From these data, we finally selected the most 
suitable motif time series characterized by: (a) the largest num-
ber of different motifs (abundance) and (b) the most equal pro-
portion of each motif (evenness). To do so, we created a list of 
temporal sequences of network motifs obtained from different 

F I G U R E  1   Transformation of an animal movement data into a temporal movement network: the problem of grid resolution. A 
hypothetical trajectory is transformed using three different cell sizes: large, medium and small. (a) Original trajectory embedded in each grid 
resolution. Orange dots represent the coordinates of the animal. (b) Resulting movement network built by assigning a single node identity to 
each of the coordinates that fall into the same cell. The trajectory is thus transformed into a movement network in which spatial coordinates 
are nodes (orange dots) and movements between them are directed edges (light blue arrows). Directed edges associated to a specific time 
produce a temporal movement network. Shannon diversity index used to select the optimal grid size given the data (see adjustment of grid 
resolution paragraph below)
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grid resolutions (i.e. p = .2, .3, .4, .5, .6, .7, .8, .9) and calculated 
a similarity matrix using the DTW distance between them with 
the function ‘dist’ of the r package stats (R Core Team, 2018). We 
applied the Shannon diversity index (Shannon, 1948), using the r 
package vegan (Oksanen et al., 2018), to select the optimal time 
series. Specifically, we used as optimal grid size the step length 
corresponding to the highest value of Shannon diversity index (to 
illustrate the robustness of the method, results from the second 
highest value are presented in Text S2). With this procedure, we 
ensured an objective way to select the best grid resolution value 
returning the time series with the largest number of motifs which 
proportions were also more equally represented. For each dataset, 
we identified the best grid resolution to analyse complex move-
ment patterns using sequences of behavioural patterns instead 
of the trajectory parameters themselves (e.g. median step length, 
mean turning angle). We evaluated whether the proportion of mo-
tifs differed across datasets with a chi-square (χ2) test, applied to 
a table with rows and columns corresponding to motif counts and 
animals, using the ‘chisq.test’ function in r.

2.2.4 | Visualization of temporal 
behavioural patterns

To illustrate that our method can be used to identify spatio-temporal 
behavioural patterns from complex animal trajectories, we repre-
sented the evolution of motifs through time. Here, we focused only 
on the seven motifs identified as indicative of complex movements: 
characterized by at least one revisit to a node. We extracted the geo-
graphic locations involved in the construction of these motifs and 

represented them in the network to describe spatio-temporal pat-
terns of complex behaviours. Loops (movements starting and end-
ing at the same location) are structurally removed when analysing 
network motifs (Wasserman & Faust, 1994). To account for such be-
havioural patterns, we first extracted the number of loops observed 
inside each motif and we later applied a generalized linear model 
(GLM) for count data (Poisson error distribution) to estimate the re-
lationship between motif complexity and the number of loops per-
formed using the glm function of the r package stats (R Core Team, 
2018). We also tested different temporal windows by resampling the 
roe deer and wolf dataset (see Text S3).

2.2.5 | Evaluation of temporal motifs with a 
null model

The evaluation of motif counts of a static network is typically pre-
sented in terms of difference from a null model (Milo et al., 2002). 
The null model is usually a randomized version of the empirical net-
work constrained by some of the network characteristics such as 
the degree sequence (node randomization) or the strength of the 
relationship between nodes (edge randomization) or both (Farine & 
Whitehead, 2015). If the count of a specific motif significantly ex-
ceeds that of the null model, the motif is considered to be structur-
ally significant. However, if the null model is far from having realistic 
features, the differences observed (even if statistically significant) 
do not tell anything insightful about the nature of each motif (Artzy-
Randrup, Fleishman, Ben-Tal, & Stone, 2004).

In temporal directed networks, where a temporal correlation 
between successive motifs can be expected, an effective way to 

F I G U R E  2   Possible three-node motifs in movement networks and extraction of their temporal sequence. (a) Eight out of 13 possible 
motifs were retained. These included four loosely connected motifs (M3, M4, M5, M6), that is, subgraphs missing one edge between two 
out of three nodes, and four closely connected motifs (M8, M10, M12, M13), that is, subgraphs with at least one edge between each node. 
(b) Hypothetical directed movement network (left) represented as a node sequence (right). Horizontal red bars refer to the subsequence of 
three nodes used to extract each motif
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compare the experimental sequence with a randomized sequence 
is by time-shuffling, that is randomly sample motifs in a sequence 
and change their temporal position. The focus is then made on the 
structure of the motif sequence itself and on the probability of tem-
poral co-occurrence (conditional probability) of specific motif associ-
ations. Here we used the conditional probabilities between each pair 
of motif to reveal the existence of non-random transitions between 
specific behavioural patterns. We first calculated the probability ma-
trix to move from each motif to the next (8 × 8 matrix) and compared 
this matrix with 100 probability matrices obtained from time-shuf-
fled time series. For each pair of temporal patterns, we calculated 
the 95% confidence intervals (CIs) and compared the probabilities 
from the original motifs time series to the corresponding probabili-
ties obtained from time-shuffled motif time series. We used a one-
tail analysis and consider probabilities falling outside of the upper 
95% CI as significant. The obtained resulting binary matrix thus as-
signs 1 to all the positive non-random conditional probabilities and 
0 to the others.

2.2.6 | Comparing non-random probabilities with 
Brownian motion and Lévy walk

Brownian motion and Lévy walks are two main theoretical ran-
dom movement patterns used to describe trajectories observed 
in nature (Turchin, 1998; Figure 3). Pure Brownian random walks 
have been introduced to describe animal search strategies when 
no information is available. Brownian motions are determined by 
successive steps in random directions whose step lengths and 
turning angles are randomly drawn from a normal distribution 
(Bartumeus, Catalan, Fulco, Lyra, & Viswanathan, 2002). Lévy 
walks are defined by movement patterns following a power-
law distribution (Reynolds, 2018; Shlesinger & Klafter, 1986; 
Viswanathan et al., 1996). To estimate the degree by which the 
four original trajectories differed from Brownian and Lévy ran-
dom movements, we compared the binary matrices of transition 
between motifs obtained for each of the four animal trajecto-
ries with 100 probability matrices obtained from both simulated 

Brownian and Lévy trajectories by calculating the Jaccard index 
of similarity using the function birewire.similarity in the r pack-
age ‘Birewire’ (Gobbi, Iorio, Albanese, Jurman, & Saez-Rodriguez, 
2017). We thus obtained four distributions of Jaccard indices 
(one for each dataset) and compared them using t-statistic. We 
adjusted the α value using the sequential Bonferroni correction 
(Rice, 1989).

3  | RESULTS

3.1 | Identification of optimal grid size

The crucial step in transforming an animal trajectory into a 
movement network involves the selection of an optimal grid 
resolution that is small enough to obtain a suitable number of 
nodes to create a network, and large enough to provide insight-
ful details on the animal movement patterns. For each dataset, 
we extracted the step length values of the nine quantiles of 
the step length distribution of the trajectory, and removed any 
quantiles with step length value close to zero (i.e. values lower 
than 10–6). We obtained seven possible quantile values for the 
black kite, and nine quantile values for the bumblebee, the roe 
deer and the wolf (Table S1). We used these quantile values as 
cell size to build spatial grids and generate movement networks. 
From these networks, we extracted temporal sequences of net-
work motifs and compared them using the DTW distance to se-
lect the optimal grid resolution given the data. We then applied 
the Shannon diversity index to select the motif time series for 
each dataset as candidate sequence for subsequent analyses. 
The Shannon diversity index retained the motif time series 5, 5, 
7 and 8, corresponding to a cell size of step length value 11.209 
(i.e. quantile 0.5) for the bumblebee, 0.0075 (i.e. quantile 0.7) 
for the black kite, 0.0037 (i.e. quantile 0.7) for the roe deer and 
0.2642 (i.e. quantile 0.8) for the wolf (Figure 4; see Table S1 for 
the values of all quantiles). Thus, the optimal grid size selected 
for the temporal analyses of network motifs varied across the 
four datasets.

F I G U R E  3   Examples of simulated 
random movements. Brownian motion is 
characterized by a stationary behaviour 
throughout the entire trajectory whereas 
Lévy walk shows an alternance of local 
stationarity and ballistic movements
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3.2 | Analysis of behavioural patterns

The proportion of motifs was different across the four datasets 
(χ2 = 56.77, df = 21, p < .001). The dominant motif was the motif M3 
(Figure 5) that characterizes unidirectional movements across three 
nodes without revisits. This motif has different biological meanings 
depending on the species under consideration. In the black kite and 
the roe deer, a succession of M3 motifs is characteristic of migra-
tory movement patterns. In the wolf, however, this temporal pattern 
is characteristic of movements towards familiar locations in a home 
range, such as hunting areas. In the bumblebee, the succession of 
M3 motif is indicative of search flights.

The seven other motifs characterize bidirectional movements 
with at least one revisit to the same node, indicating a temporal re-
use of specific areas. The different proportions of such motifs in the 
movements may have different biological meanings in the different 
species and, once identified, are open to study.

To further explore and interpret the succession of temporal 
motifs, we constructed simplified trajectories highlighting the 
spatial locations of the simple (unidirectional) motif and the more 
complex (bidirectional) motifs in the original data. Because motif 
analysis does not allow to include loops (self-edges), we also con-
structed simplified trajectories highlighting the spatial locations 
of each loop (Figure 6). The number of loops on the same location 
increased with the complexity of network motifs indicating that 
for all four trajectories, more complex behavioural patterns rep-
resent areas of temporal interest in animals (GLM for count data—
bumblebee: estimate = 0.243, SE = 0.058, z = 4.175, p < .001; 
black kite: estimate = 0.203, SE = 0.025, z = 8.252, p < .001; roe 
deer: estimate = 0.122, SE = 0.019, z = 6.296, p < .001; wolf: 
estimate = 0.275, SE = 0.014, z = 19.698, p < .001). In the bumble-
bee trajectory, bidirectional motifs occurred when the individual 
was in the nest area and near flowers, indicating an association 
between complex behavioural patterns and familiar locations, 

F I G U R E  4   Motif time series selection. 
The Shannon diversity index was applied 
to motif time series for each dataset: (a) 
bumblebee, (b) black kite, (c) roe deer, (d) 
wolf. The highest Shannon diversity index 
value, used to select the most suitable 
motif time series for each dataset, is 
highlighted in red

F I G U R E  5   Proportion of network 
motifs in each dataset. For each species 
(a) bumblebee, (b) black kite, (c) roe deer, 
(d) wolf, the proportion of motifs has been 
divided into two main categories: a motif 
describing a unidirectional movement 
(orange) and seven motifs describing more 
complex bidirectional patterns (blue)
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while loops tended to be concentrated around the nest only, a 
behavioural pattern reminiscent of orientation flights (Osborne 
et al., 2013; Figure 6a). In the black kite trajectory, more complex 

bidirectional motifs occurred in areas around the release point 
and few locations after the start of the migration and they also 
correspond to single locations of intensive use (loops; Figure 6b). 

F I G U R E  6   Spatio-temporal sequence of behavioural patterns. Evolution of motifs: temporal sequence of network motifs for each 
dataset. Blue: bidirectional motifs (M4, M5, M6, M8, M12, M13). Red: unidirectional motif (M3). Complex motifs: temporal motifs mapped 
on original trajectories. Blue gradient encodes the temporal sequence of the more complex bidirectional motifs. Loops: movements starting 
and ending at the same location mapped on original trajectories. Blue gradient encodes the temporal sequence of loops. (a) Bumblebee 
data: bidirectional motifs are observed around the location of the nest and the artificial flowers (F1–F3) while loops are disproportionally 
observed around the nest location. (b) Black kite data: bidirectional motifs are observed before migration and at stopover locations along 
the migration route and loop behaviours tend to correspond to those locations. (c) Roe deer data: bidirectional motifs are observed in both 
winter and summer territories while loops evidence some specific sub-areas of repeated intensive use. (d) Wolf data: bidirectional motifs are 
observed in two territories (main and roaming areas) during specific periods of the year as well as some small area of temporary use sparse 
along the animal path. Loops here are observed only for the summer territory of the wolf (Kaczensky et al., 2006)
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In the roe deer trajectory, complex motifs occurred intensely in 
two different areas while loops gathered around specific smaller 
areas (Figure 6c). In the wolf trajectory, complex bidirectional 
motifs were observed in two spatially differentiated areas, while 
loops were only observed in one of them (Figure 6d).

3.2.1 | Comparison with Brownian and Lévy walks

We studied the degree by which the four experimental datasets dif-
fered from Brownian and Lévy random movements. We calculated 
probability matrices of temporal co-occurrence (conditional prob-
ability) of specific motif associations from original trajectories and 
from simulated ones. We extracted the Jaccard index of similarity 
between each original matrix and 100 Brownian motions and 100 
Lévy walks thus obtaining two distributions of 100 values for each 
trajectory. We compared the obtained distributions between them 
using a t-test with Bonferroni correction. Between each pair of dis-
tributions, the one having higher mean resembles more to the se-
lected theoretical model than the other one. The trajectories of the 
bumblebee and the roe deer tend to be equally similar to Brownian 
motion and to differ from both the black kite and wolf trajectories 
(Table 1, Brownian motion).The bumblebee trajectory resembles 
more to a Lévy random walk than the other trajectories (Table 1, 
Lévy walk).

4  | DISCUSSION

Network analyses are powerful tools to statistically describe and 
compare the spatial structures of animal movements (Jacoby & 
Freeman, 2016). So far, however, these approaches do not take into 
account the temporal dimension of movements, which is essential to 

interpret complex behavioural patterns and their dynamics (ontog-
eny, repetition, changes). Here we introduced a method to automati-
cally extract motif patterns from animal tracking data and analyse 
their succession over time.

Our approach builds on the utilization of movement networks to 
analyse patterns of space use by animals (Bastille-Rousseau et al., 
2018; Jacoby & Freeman, 2016; Pasquaretta et al., 2017). Starting 
from the proposition of Bastille-Rousseau et al. (2018) to isolate 
areas of intensive use from static spatial network representations 
of animal movements, we propose to keep trace of temporal infor-
mation and create behavioural time series embedded in space. Our 
method is simple to operate and thus expected to be embraced 
by a large community of ecologists. First the animal trajectory is 
transformed into a spatial movement network in which nodes are 
geographic locations and edges are movements between these loca-
tions. Next, the step length distribution of the trajectory is used to 
calculate multiple movement networks, extract their motif time se-
ries and compare them to estimate the optimal grid size providing the 
most diverse sequence of motifs. This selection is used to objectively 
determine the most suitable resolution for the spatio-temporal anal-
ysis of animal trajectories given the data. The temporal exploration of 
movement trajectories from four case studies demonstrates that our 
approach is functional and insightful. The analysis of movement pat-
terns matched very well with our knowledge of the ecological con-
text in which the data were recorded, allowing us to identify simple 
behavioural patterns associated with search routines and migration 
(unidirectional motifs), and more complex patterns (bidirectional mo-
tifs) correlated with the exploitation of familiar areas (migration sites, 
home range), revisits to specific locations (nest, flowers), resting 
phases during migrations (stopovers, sparse area of temporary use).

In the bumblebee dataset, complex motifs occurred when the 
individual was near to biologically relevant locations (nest and flow-
ers). These results are consistent with the well-described observa-
tions that bumblebees searching for nectar resources often return to 
their nest and previously discovered flowers (Lihoreau et al., 2012; 
Osborne et al., 2013), possibly to explore new areas from known ref-
erence spatial locations (Lihoreau, Ings, Chittka, & Reynolds, 2016). 
Additionally, the loop analysis revealed a strong tendency of the 
bumblebee to remain around the nest before flying longer distances. 
This finding is in accordance with previous works demonstrating 
that bumblebees use learning flights, in the form of loops around 
the nest, to learn and memorize the location of the nest in the en-
vironment (Osborne et al., 2013). In the black kite dataset, com-
plex movement patterns and loops overlap almost perfectly, which 
likely indicates the existence of stopover sites along the migratory 
route of the bird. The spatio-temporal analysis of the roe deer data-
set highlighted the existence of two successive migratory events 
during which similar use of spatially distinct home ranges occurs. 
Interestingly, loops were concentrated around specific areas which 
might correspond to areas of core usage (i.e. 50% of the time is spent 
in these specific areas) of the home range of the animal during both 
summer and winter seasons. The wolf dataset presents complex bi-
directional motifs across a summer and a winter territory (Kaczensky 

TA B L E  1   Students t-statistics between distributions of 100 
Jaccard indices calculated from the comparison of each binary non-
random motif conditional probabilities with 100 simulated matrices 
obtained from a Brownian and a Lévy random movement model

Brownian motion Lévy walk

Bumblebee—Black kite  
(t = 5.97; p < .001)

Bumblebee—Black kite 
(t = 6.68; p < .001)

Bumblebee—Roe deer  
(t = 2.59; p = .009) ns

Bumblebee—Roe deer 
(t = 8.97; p < .001)

Bumblebee—Wolf  
(t = 9.31; p < .001)

Bumblebee—Wolf 
(t = 5.24; p < .001)

Wolf—Black kite  
(t = −2.58; p = .009) ns

Wolf—Black kite 
(t = −1.14; p = .255) ns

Roe deer—Black kite  
(t = 3.75; p < .001)

Roe deer—Black kite 
(t = 1.40; p = .162) ns

Roe deer—Wolf  
(t = 7.32; p < .001)

Roe deer—Wolf (t = 2.55; 
p = .010) ns

Note: We applied a Bonferroni correction for six multiple comparisons 
(new reference α = 0.008).
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et al., 2006). Sparse areas of temporary use are also revealed along 
the trajectory suggesting possible resting areas during the roaming 
process. In this case, interestingly, loop behaviours were only ob-
served in the summer territory, suggesting the possible existence of 
valuable resources in this area.

Comparing the four trajectories with simulated random move-
ment indicated that some trajectories resemble more to a Brownian 
motion or Lévy walk than others. The bumblebee trajectory, for 
example, resembles more to a Lévy walk than the other trajecto-
ries, thus confirming previous studies suggesting the existence of 
Lévy flights as optimal search strategy in bumblebees (Lihoreau 
et al., 2016; Reynolds, 2008; Reynolds, Smith, Reynolds, Carreck, & 
Osborne, 2007). The black kite and the wolf trajectories appeared 
different from both Brownian and Lévy motions thus suggesting 
the possibility to study these movements using more complex be-
havioural models. Indeed, Brownian motion often underestimates 
long range movements while pure Lévy walk often overestimates 
them (Vallaeys, Tyson, Lane, Deleersnijder, & Hanert, 2017). More 
realistic motions might also be tested in the future (e.g. correlated 
random walks; Bovet & Benhamou, 1988) to compare trajectories 
between them and against specific hypothesis.

Future quantitative analyses using multiple trajectories from 
more individuals will be essential to develop fruitful research on the 
movement ecology of species. Studies of animal movement are gen-
erally based on high resolution data from a few individuals, partly 
because obtaining long-term data in the field is not an easy task. 
However, with the fast development of automated tracking systems, 
analyses of rich movement datasets based on large numbers of tra-
jectories from many individuals are becoming possible (Cagnacci, 
Boitani, Powell, & Boyce, 2010). Our automated analysis has the 
main advantages of capturing the temporal properties of complex 
movement patterns into synthetic and standardized network met-
rics that facilitate comparative analyses. The metrics obtained are 
comparable through time for the same individual (e.g. if we are in-
terested in learning and memory) or across individuals (e.g. to assess 
inter-individual variability in a population, between populations or 
between species). This approach may therefore facilitate the devel-
opment of a truly comparative movement ecology based on statis-
tics on standard network metrics.

Our utilization of network metrics could be adjusted depend-
ing on the type of data collected and the question addressed. 
Interestingly, it is possible to study motifs with more than three 
nodes to compare multiple spatio-temporal level of behavioural 
complexity that might not emerge from the study of low order mo-
tifs. For instance, a four-node sequence such as A-B-C-D-A provides 
a description of a large area of interest for an animal while the three-
node equivalent A-B-C plus C-D-A only provides description of two 
unidirectional movements between locations without any evidence 
of spatio-temporal clusters. Note however, the limitation of compu-
tational capabilities tend to restrict operational motif size for this 
type of analysis and debate on how to extract subgraphs with more 
than three nodes is still open (Agasse-Duval & Lawford, 2018; Ning, 
Liu, Yu, & Xia, 2017; Williams, Wang, Williams, & Yu, 2014).

Importantly, our method enables to compare the spatio-temporal 
structure of behavioural patterns to known theoretical move-
ment models. In the future, a functional motif analysis could be 
implemented to highlight cluster of functional roles (McDonnell, 
Yaveroğlu, Schmerl, Iannella, & Ward, 2014). Functional motifs 
could help describe potential changes in behavioural patterns. The 
utilization of network motifs to analyse animal movements offers a 
detailed representation of behavioural patterns which is certainly 
complementary to more classical descriptors of animal movements 
(e.g. step length, turning angle) and other methods used to obtain 
behavioural modes (e.g. t-SNE). For instance, the t-SNE method is 
a procedure to cluster spatial data based on their similarity in var-
ious quantitative traits (e.g. straightness, net displacement, mean 
velocity, see Bartumeus et al., 2016). It enables to describe animal 
movements as behavioural patterns thus transforming a raw animal 
trajectory into smaller spatial segments representing diverse be-
havioural modes. The t-SNE method relies on the interpretation of 
these behavioural modes. Our spatio-temporal network method, by 
associating motifs to the specific segments obtained from the t-SNE, 
could be used to improve their interpretation by the use of direct 
visualization. Analysis of large movement datasets with our method 
will also provide the opportunity to develop time series analyses of 
network motifs using Markov chains. This approach would be a pow-
erful means to move from describing and comparing to predicting 
temporal sequences of animal movements.

As illustrated above, another major advantage of our method is 
that it is broadly applicable and can suit different types of move-
ment data collected with different technologies (GPS, PTT, har-
monic radar), at different spatial scales (local territories, countries) 
and temporal scales (minutes, years), on animals with different loco-
motion modes (walking, flying) and in different ecological contexts 
(exploration, exploitation, migration). In principle, temporal analyses 
of spatial network can be used to study virtually all types of animal 
movement data in which individual animals are regularly re-located. 
If trajectories are incomplete, for instance because the signal of 
the animal is lost for some period of time, linear interpolation can 
be used to fill gaps (Strandburg-Peshkin et al., 2015; Strandburg-
Peshkin, Farine, Crofoot, & Couzin, 2017). For any species, however, 
the main limiting factor is the length of the trajectory (i.e. number of 
data points). If the trajectory has too few data points, there is a high 
risk that simplification into a movement network does not provide 
enough motifs to allow for an insightful exploration of the data.

We have shown that network analyses can be used to investigate 
the temporal dimension of animal movements and get insights into 
how the animals interact with their ecological environment (exploita-
tion of known resources, migration routes, stopover sites, territo-
ries and roaming areas). Since most animals (including those studied 
here) frequently interact with social partners or competitors, a major 
challenge for future studies is to analyse the temporal behavioural 
movement patterns of interacting animals. Important steps have 
been made to develop new methods to extract social network from 
animal trajectories and future directions have been pointed towards 
using social telemetry data to identify preferred habitats for entire 
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groups (Robitaille, Webber, & Vander Wal, 2019). Our method can 
help analyse these data by allowing the characterization of complex 
behavioural patterns of space use by multiple interacting individuals. 
For example, a preliminary analysis of the trajectories of two wolves 
(male and female) inhabiting the same area of the Mongolia desert 
shows that the looping behaviours of both animals occur in separate 
zones. Specifically, the male repeatedly used locations surrounding 
the female's territory and performed the highest density of loops 
in an area facing the area where the female exhibited the highest 
density of loops (blue locations in Figure 7).

From this type of data, it is possible to construct temporal 
proximity matrices between individuals and apply classic social 
network approaches to study interactions among individuals 
(not showed here). The temporal dimension of our networks can 
thus inform about non-random associations between behavioural 
patterns expressed by the individuals. For instance, specific se-
quences of complex motifs (M8, M10, M12, M13) or loops may 
reveal behavioural patterns characteristic of mating, territory for-
mation and maintenance or dispersal following social interactions. 
More generally, our work is part of a rapidly growing research 
domain aiming at developing multi-layered network methods to 
study social, spatial and temporal dimensions of animal movement 
(Finn, Silk, Porter, & Pinter-Wollman, 2019; Mourier, Ledee, & 
Jacoby, 2019; Silk, Finn, Porter, & Pinter-Wollman, 2018). By in-
cluding motifs as an attribute of each node in each layer, it will be 
possible to integrate the temporal, social and spatial dimensions 
of movements into a single analytical framework and open new 
promising grounds for extending the analysis of complex move-
ment patterns at the population level.
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